首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AX (γH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed “G2H” compartment), to cells that there were almost negative and had about 2 foci (termed “G2L” compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2–3 h delay in G2L.  相似文献   

2.
We have developed an algorithm for designing multiple sequences of nucleic acids that have a uniform melting temperature between the sequence and its complement and that do not hybridize non-specifically with each other based on the minimum free energy (ΔGmin). Sequences that satisfy these constraints can be utilized in computations, various engineering applications such as microarrays, and nano-fabrications. Our algorithm is a random generate-and-test algorithm: it generates a candidate sequence randomly and tests whether the sequence satisfies the constraints. The novelty of our algorithm is that the filtering method uses a greedy search to calculate ΔGmin. This effectively excludes inappropriate sequences before ΔGmin is calculated, thereby reducing computation time drastically when compared with an algorithm without the filtering. Experimental results in silico showed the superiority of the greedy search over the traditional approach based on the hamming distance. In addition, experimental results in vitro demonstrated that the experimental free energy (ΔGexp) of 126 sequences correlated well with ΔGmin (|R| = 0.90) than with the hamming distance (|R| = 0.80). These results validate the rationality of a thermodynamic approach. We implemented our algorithm in a graphic user interface-based program written in Java.  相似文献   

3.
Earlier work of several laboratories established that the yields of radiation-induced ring and dicentric chromosomes are greater when human peripheral blood lymphocytes are irradiated in GH1 some hours after phytohemagglutinin stimulation than if they are irradiated in G0 before stimulation. Post-treatment of lymphocytes irradiated in G0 with the DNA polymerase inhibitor aphidicolin, which is effective against both pol α and pol δ, produces a similar increase in ring and dicentric yield. We found that aphidicolin post-treatment was much less effective in increasing ring and dicentric yield increases in cells irradiated in G1 four to five hours after stimulation. Because we had earlier found specific inhibitors of DNA pol α ineffective in producing increased yields in either G0 or G1 lymphocytes, we conclude that much of the G0 to G1 increase in yields is mediated by pol δ.  相似文献   

4.
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ~2×2 mm2). Ten days later, a tumor sample (area of ~5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   

5.
The structural properties of oligonucleotides containing two different types of G-rich sequences at the 3′-ends were compared. It is shown that oligonucleotides with uninterrupted runs of guanine residues at the 3′-end, e.g., d(T15G12), form multistranded structures stabilized by guanine-guanine interactions. The chemical and physical properties of these complexes differ from those of the complexes formed by oligonucleotides with telomere-like sequences, e.g., d(T15G4T2G4). In methylation protection and methylation interference experiments, we found all the guanines in complexes formed by d(T15G15) and d(T15G12) to be accessible to methylation. Furthermore, the methylated monomers retain the ability to polymerize. This contrasts with the inaccessibility of the guanines in d(T15G4T2G4) to methylation and the inability of the methylated monomer to form supramolecular structures. The stoichiometry of the complexes arising from the two types of oligonucleotides also differs. The complexes formed by d(T15G15) consist of consecutive integer numbers of DNA strands, whereas complexes formed by telomere-like oligonucleotides contain 1, 2, 4, or multiples of four strands. Magnesium ions favor formation of high molecular weight complexes by d(T15G15) and d(T15G12), but not by d(T15G4T2G4). The d(T15G15) and d(T15G12) complexes have very high thermal stability compared with telomeric complexes. However, at low temperatures, the thymine bases within the telomeric motif, TTGGGGTTGGGG, appear to allow for the formation of stable high-molecular weight species with a longer nonguanine portion. © 1998 John Wiley & Sons, Inc. Biopoly 45: 427–434, 1998  相似文献   

6.

DNA fragments with the sequences d(gcGX[Y]n Agc) (n = 1, X = A, and Y = A, T, or G) form base-intercalated duplexes, which is a basic unit for formation of multiplexes such as octaplex and hexaplex. To examine the stability of multiplexes, a DNA with X = Y = G and n = 1 was crystallized under conditions different from those of the previously determined sequences, and its crystal structure has been determined. The two strands are coupled in an anti-parallel fashion to form a base-intercalated duplex, in which the first and second residues form Watson-Crick type G:C pairs and the third and sixth residues form a sheared G:A pairs at both ends of the duplex. The G4 and G5 bases are stacked alternatively on those of the counter strand to form a long G column of G3-G4-G5*-G5-G4*-G3*, the central four Gs being protruded. In addition, the three duplexes are associated to form a hexaplex around a mixture of calcium and sodium cations on the crystallographic threefold axis. These structural features are similar to those of the previous crystals, though slightly different in detail. The present study indicates that mutation at the 4th position is possible to occur in a base-intercalated duplex for multiplex formations, suggesting that DNA fragments with any sequence sandwiched between the two triplets gcG and Agc can form a multiplex.  相似文献   

7.
Summary Mammary and adipose explants from eight mid-lactation Holstein cows were co-cultured for 24 h in the presence or absence of liver explants, 1 μg/ml pituitary bovine somatotrophin, or 100 ng/ml insulinlike growth factor-I. Liver explants in the media significantly depressed DNA and protein synthesis by mammary tissue as measured by [14C]-thymidine and amino acid incorporation. As measured by flow cytometry, the concentration of DNA in the G0G1 and G2M cells and the percentage of cells in the G0G1 population of mammary tissue was also significantly depressed by liver tissue. Changes in the percentage of cells in the S and G2M phases were not significant. Insulinlike growth factor-I in the presence of liver explants depressed protein synthesis, thymidine incorporation, and the concentration of DNA in the G0G1 and G2M cells compared to control but did not affect the percentage of cells in the G0G1, S, or G2M phases. Previously it was assumed that changes in [14C]thymidine incorporation indicated that changes in cell division were occurring. Flow cytometry revealed that changes in DNA content of mammary cells as a result of liver or hormonal stimulation were not due to changes in cell division. Indications are that differences in cellular DNA content result from changes in the rate of amplification of individual genes responsible for milk protein synthesis.  相似文献   

8.
Proline-rich tyrosine kinase 2 (Pyk2) is activated by various agonists in platelets. We evaluated the signaling mechanism and the functional role of Pyk2 in platelets by using pharmacological inhibitors and Pyk2-deficient platelets. We found that platelet aggregation and secretion in response to 2-methylthio-ADP (2-MeSADP) and AYPGKF were diminished in the presence of Pyk2 inhibitors or in Pyk2-deficient platelets, suggesting that Pyk2 plays a positive regulatory role in platelet functional responses. It has been shown that ADP-, but not thrombin-induced thromboxane (TxA2) generation depends on integrin signaling. Unlike ADP, thrombin activates G12/13 pathways, and G12/13 pathways can substitute for integrin signaling for TxA2 generation. We found that Pyk2 was activated downstream of both G12/13 and integrin-mediated pathways, and both 2-MeSADP- and AYPGKF-induced TxA2 generation was significantly diminished in Pyk2-deficient platelets. In addition, TxA2 generation induced by co-stimulation of Gi and Gz pathways, which is dependent on integrin signaling, was inhibited by blocking Pyk2. Furthermore, inhibition of 2-MeSADP-induced TxA2 generation by fibrinogen receptor antagonist was not rescued by co-stimulation of G12/13 pathways in the presence of Pyk2 inhibitor. We conclude that Pyk2 is a common signaling effector downstream of both G12/13 and integrin αIIbβ3 signaling, which contributes to thromboxane generation.  相似文献   

9.
Large T antigen (TAg) of the human polyomavirus JC virus (JCV) possesses DNA binding and helicase activities, which, together with various cellular proteins, are required for replication of the viral genome. We now show that JCV-infected cells expressing TAg accumulate in the G2 phase of the cell cycle as a result of the activation of ATM- and ATR-mediated G2 checkpoint pathways. Transient transfection of cells with a TAg expression vector also induced G2 checkpoint signaling and G2 arrest. Analysis of TAg mutants with different subnuclear localizations suggested that the association of TAg with cellular DNA contributes to the induction of G2 arrest. Abrogation of G2 arrest by inhibition of ATM and ATR, Chk1, and Wee1 suppressed JCV genome replication. In addition, abrogation of the G2-M transition by Cdc2 depletion disabled Wee1 depletion-induced suppression of JCV genome replication, suggesting that JCV replication is facilitated by G2 arrest resulting from G2 checkpoint signaling. Moreover, inhibition of ATM and ATR by caffeine suppressed JCV production. The observation that oligodendrocytes productively infected with JCV in vivo also undergo G2 arrest suggests that G2 checkpoint inhibitors such as caffeine are potential therapeutic agents for JCV infection.  相似文献   

10.
Sources of error in a typical algorithm for the analysis of single flow-microfluorometric histograms are identified. A new statistical model for such data is presented, by means of which the error sources are quantitatively investigated. These theoretical investigations lead to three practical observations: A more detailed characterization of the fluorescence dispersion process is needed for a more refined algorithm. Levels of dispersion typically experienced are such that from a single histogram the distribution of cells within S-phase cannot be finely resolved; but the crude distribution of cells among the three phases G1, S, and G2-M may be accurately estimated. If currently typical levels of dispersion can be halved, then the S-phase distribution can be finely resolved.  相似文献   

11.
The cytotoxic and mutagenic effect of (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE) in normally excision diploid human cells treated just prior to onset of S was compared with that of cells allowed ~ 16 h for excision repair before onset of S and with that observed in excision-deficient serodema pigmentosum (SP12BE) cells. The cells were synchronized by release from density inhibition of cell replication. DNA synthesis began ~ 22 h after the cells were plated at lower density (i.e., 1.4 × 104 cells/cm2). The frequency of thioguanine-resistant mutants induced in normal cells treated just prior to onset of S was ~ 12- to 16-fold higher than that observed in cells treated in early G1 or treated in G0 (confluence) and then plated at lower density. The frequency approximated that expected for XP12BE cells from extrapolation of data obtained at lower doses. The frequency of mutants measured in normal cells treated in exponential growth was also much higher than that in the cells treated in early G1 or in G0, No such difference could be seen in XP12BE cells treated in exponential growth or in G0. In contrast to the mutagenicity data in the normal cells, there was no significant difference in the slope of the survival curve of normal cells treated at various times prior to S phase at low densities. However, normal cells treated even at the onset of S exhibited survival equal to XP12BE cells give a 4- to 5-fold lower dose. The data support the hypothesis that DNA synthesis is the cellular event which converts unexcised DNA lesions into mutations. However, they indicate that S is not the event primarily responsible for translating DNA damage into cell death. Accompanying studies on the rate of excision of anti BPDE adducts from the normal cells during the period priot to S support the conclusions.  相似文献   

12.
Summary A new technique of exploitation of the data was proposed after DNA scanning microdensitometry. By using all of the measurements obtained from the seriated sections of a single nucleus, this method made it possible to estimate six characteristic parameters during the different phases of the cell cycle in the various shoot apical cells. The cells whose rate of proliferation was the highest showed the biggest variations of their nuclear and nucleolar volumes during the cell cycle. In the axial zone, where the cells have a slow cell cycle and display the longest duration of the G1 phase, the volume occupied by dispersed DNA was greater than in the cells of the lateral zone and of the rib meristem, where the cell cycle and the G1 phase were short. No matter what the cell type, the proportion of the dispersed and condensed DNA varied little when the G1 and G2 phases were compared. In the Z phase, characterized by a decondensation of the DNA, the mean DNA amount was 3.4 C. The evolution of the nuclear density during the interphase was also estimated. It is demonstrated that the main feature of the shoot apex zonation was the decondensation of the condensed DNA in the axial zone in both the G1 and G2 phases.  相似文献   

13.
This study examines the behavior of glycogenstoring rat hepatoma (N13) in vitro using cytophotometric techniques. A significant increase in glycogen is observed in these cells after 30 min incubation in a buffered solution containing 0.1 mM glucose, that is 80 times lower than the physiological glucose concentration in rat blood. N13 hepatoma cells grow exponentially in culture using RPMI 1640 tissue culture medium supplemented with 10% fetal bovine serum. During the first day in culture these cells store a large amount of glycogen and this increase is also observed in serum-free cultures. In more prolonged cultures the amount of glycogen per cell gradually becomes lower, although the culturing conditions are maintained. Similar variations of protein are also observed during the initial period of culture. DNA distribution does not show significant changes, although in serum-free cultures an increase in the proportion of cells in S and G2/M phases is observed. The addition of glucagon, epinephrine and cyclic AMP derivatives to serum-free cultures does not impede the storage of glycogen. Nevertheless, addition of either 2 mM N6,O2-dibutyryl cyclic AMP or 0.1 mM 8-(4-chlorophenylthio)-cyclic AMP blocks the cell cycle at G0/G1 and glycogen content does not decrease after the first day in culture. We believe that this cell line offers an appropriated model to study glycogen metabolism and its involvement in the neoplastic process.  相似文献   

14.
The free energy of unfolding of a membrane protein from lipids into water (ΔGow,l) describes its equilibrium thermodynamic stability. Knowing this parameter gives insight into a membrane protein's sequence-structure-energy relationships. However, there are few measures of membrane protein stability because of the technical difficulties associated with unfolded and partially folded states. Here, we describe the experimental process that allowed us to measure the ΔGow,l of the outer membrane phospholipase A into large unilamellar vesicles (LUVs) of 1,2-dilauroyl-sn-glycero-3-phosphocholine. To arrive at this reversible folding condition, we screened a large number of experimental variables: temperature, incubation time, salt concentration, pH, lipid composition and liposome morphology. The principal challenge we encountered under most conditions was hysteresis between folding and unfolding titrations. A second factor that compromised reversible folding was the observation that a fraction of the protein population tended to aggregate. We found that hysteresis could be completely eliminated on a feasible timescale by conducting experiments at acidic pH, by the slow dilution of the protein in the initial titration setup and by utilizing a low concentration of a detergent as a temporary “holdase” to solubilize the protein upon its initial dilution into folding conditions. We confirmed that the detergent did not disrupt the LUVs using fluorescence emission of lipid-sensitive dyes and light scattering. The results of our parameter search should be generally useful for efforts to measure ΔGow,l for other membrane proteins.  相似文献   

15.
A mathematical model for the normal circadian rhythm in epidermis is formulated. It reproduces the experimental data for mice if the duration of either the G1 or the S phase oscillates. As a second step, the model is generalized to account for the influence of 3HTdR on the circadian rhythm. A simultaneous interpretation of experimental curves for LI, PLM, the mitotic rate (MR) and the phase indices G1I, SI, G2I and MI measured by micro-spectrophotometry or flow cytometry, can be given by the following hypothesis. (a) Of the S phase cells (as measured by DNA content), only the most mature fraction is labelled. Some of these labelled cells die (or loose their label) within a few hours. The free label is then reutilized. (b) For about 12 hr the flux of unlabelled cells from G1 into S phase is accelerated. These cells stay correspondingly longer in S so that their cell cycle time is scarcely affected. (c) The normal circadian triggering is disturbed for at least 36 hr after labelling. The implications of this hypothesis for double labelling experiments are discussed.  相似文献   

16.
Dovitinib (TKI258; formerly CHIR‐258) is an orally bioavailable inhibitor of multiple receptor tyrosine kinases. Interestingly, Dovitinib triggered a G2/M arrest in cancer cell lines from diverse origins including HeLa, nasopharyngeal carcinoma, and hepatocellular carcinoma. Single‐cell analysis revealed that Dovitinib promoted a delay in mitotic exit in a subset of cells, causing the cells to undergo mitotic slippage. Higher concentrations of Dovitinib induced a G2 arrest similar to the G2 DNA damage checkpoint. In support of this, DNA damage was triggered by Dovitinib as revealed by γ‐H2AX and comet assays. The mitotic kinase CDK1 was found to be inactivated by phosphorylation in the presence of Dovitinib. Furthermore, the G2 arrest could be overcome by abrogation of the G2 DNA damage checkpoint using small molecule inhibitors of CHK1 and WEE1. Finally, Dovitinib‐mediated G2 cell cycle arrest and subsequent cell death could be promoted after DNA damage repair was disrupted by inhibitors of poly(ADP‐ribose) polymerases. These results are consistent with the recent finding that Dovitinib can also target topoisomerases. Collectively, these results suggest additional directions for use of Dovitinib, in particular with agents that target the DNA damage checkpoint.  相似文献   

17.
18.
Yezo spruce (Picea jezoensis var. jezoensis) and Sakhalin spruce (Picea glehnii) occur across Hokkaido and co‐occur in some forest habitats. This leads to the potential for natural hybridization between these two species, which has been shown to occur at low frequencies. The purpose of this study was to identify these hybrids and their possible mating patterns, using various Pinaceae DNA markers with different modes of inheritance. The markers used were maternally inherited mitochondrial DNA (mtDNA), paternally inherited chloroplast DNA (cpDNA) and biparentally inherited nuclear microsatellites (nSSRs). Seven putative natural hybrids, four artificially‐crossed F1 hybrids, four parent plants from each species, and two artificially‐backcrossed hybrids of putative natural hybrids and their parents were analyzed using the diagnostic DNA markers developed in this study. We found Yezo spruce and Sakhalin spruce to be distinct (J and G types, respectively), and the modes of inheritance held true for the two species, as was previously reported to be the case in Pinaceae. Four of the seven putative natural hybrids harbored J‐type cpDNA, G‐type mtDNA and J/G‐type nSSRs, indicating that natural F1 hybrids are likely to arise from a G (female) × J (male) crossing. One natural hybrid harbored G‐type cpDNA, J‐type mtDNA and J/G‐type nSSRs, which implies that hybrids produced by J (female) × G (male) crossings occur at low frequencies. The two remaining hybrids harbored J‐type cpDNA and mtDNA with either J/G or J/J‐type nSSRs, suggesting that they may be F2 hybrids resulting from backcrossing between an F1 hybrid and a Yezo spruce.  相似文献   

19.
Besides the well‐understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re‐entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re‐entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1‐involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re‐entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long‐term DNA damage responses causing cell cycle re‐entry. We propose that recovery from oxidative DNA damage‐induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.  相似文献   

20.
The linking difference, α, imposed upon a superhelically constrained DNA molecule must be partitioned between twisting and bending deformations. Transitions to alternative secondary structures can occur at susceptible sites, altering the local molecular twist by an amount ΔTw trans. That part of the linking difference not accommodated in this way, the residual linking difference αres, must be manifested as smooth torsional and flexural deformations of secondary structure. The competition among the alternative ways of accommodating the imposed linking difference α determines a stressed equilibrium state. The superhelical free energy,G(α), is the excess free energy of the equilibrium state at linking difference α above that of the relaxed state under identical conditions. In this paper a method is described by which the free energies associated both to linking,G(α), and to residual linking differences can be determined from data on superhelical conformational transitions. The application of this approach to previously published experimental data on the B-Z transition suggests that the free energy associated with αres is about 30% larger at substantial superhelicities than it is near the relaxed state. At the onset of transition the functional form ofG(α) is shown to change in a manner dependent upon the length of the Z-susceptible site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号