首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the repeating unit of the capsular polysaccharide from Klebsiella serotype K3 has been established from the results of n.m.r. (1H and 13C) spectroscopy and methylation analysis of P1, the pyruvic acetal-bearing pentasaccharide obtained on depolymerization of the polysaccharide with a bacteriophage-borne endogalactosidase, reduced deacetalated P1, and the native polysaccharide. The data permit the assignment of the following structure to the repeating unit: (formula see text)  相似文献   

2.
Methylation, 1H nuclear magnetic resonance, and bacteriophage degradation results indicate that the Escherichia coli serotype K30 capsular polysaccharide consists of leads to 2)-alpha-D-Manp-(1 leads to 3)-beta-D-Galp-(1 leads to chains carrying beta-D-GlcUAp-(1 leads to 3)-alpha-D-Galp-(1 leads to branches at position 3 of the mannoses.  相似文献   

3.
The primary structure of Klebsiella serotype K10 capsular polysaccharide has been investigated using mainly the techniques of methylation, partial hydrolysis, and 1H and 13C NMR spectroscopy. The polysaccharide was found to consist of hexasaccharide repeating units having the following structure: (formula; see text)  相似文献   

4.
The structure of the capsular polysaccharide (K antigen) of Klebsiella K35 has been established as having the pentasaccharide repeating unit shown ("four plus one" type). The structural investigation utilized the techniques of methylation, beta-elimination, Smith degradation, and partial hydrolysis. N.m.r. spectroscopy (1H and 13C) was used extensively to establish the configurations of the anomeric linkages and to delineate the sequence of the sugars in the structure of the polysaccharide. (Formula: see text).  相似文献   

5.
The structure of the capsular polysaccharide from Klebsiella type K 49 was investigated by 1H- and 13C-n.m.r. spectroscopy of the original, carboxyl-reduced, and Smith-degraded polysaccharides. Methylation of the original K 49 and derivatives showed that the polysaccharide consists of a tetrasaccharide repeating-unit having D-galacturonic as a single lateral substituent. All of the sugars have the alpha-D-configuration. This conclusion is in agreement with measurements of spin-lattice relaxation-times for the anomeric proton. O-Acetyl groups are located on galacturonic acid, but do not occupy a unique position. (Formula: see text).  相似文献   

6.
7.
The Escherichia coli K42 capsular polysaccharide consists of leads to 3)-alpha-D-Galp-(1 leads to 3)-alpha-D-GalUAp-(1 leads to 3)-alpha-L-Fucp-(1 leads to repeating units. The E. coli K42 and Klebsiella K63 antigens are serologically identical.  相似文献   

8.
Klebsiella K36 capsular polysaccharide has been investigated by methylation, Smith-periodate oxidation and partial hydrolysis techniques. The structure was found to consist of a hexasaccharide repeating unit as shown. The anomeric configurations of the sugar were determined by 1H and 13C n.m.r. spectroscopy on isolated oligomers obtained during the degradative studies and on the intact polysaccharide.  相似文献   

9.
Regulation of capsular polysaccharide synthesis in Escherichia coli K12   总被引:27,自引:12,他引:27  
  相似文献   

10.
The structure of the capsular polysaccharide from Escherichia coli O8:K44 (A):H- (K44 antigen) has been established using the techniques of methylation, beta-elimination, deamination, and Smith degradation. N.m.r. spectroscopy (13C and 1H) was used extensively to establish the nature of the anomeric linkages of the polysaccharide and of oligosaccharides derived through degradative procedures. The K antigen is comprised of repeating units of the linear tetrasaccharide shown. This acidic polysaccharide represents the first instance of an E. coli K antigen in this series (group A) that has been found to contain two different 2-acetamido-2-deoxyhexoses.  相似文献   

11.
The acidic capsular polysaccharide isolated from Escherichia coli O9:K39:H9 was investigated, using n.m.r. spectroscopy, methylation analysis, uronic acid degradation of the native and methylated polysaccharides, and bacteriophage-associated enzyme degradation. The structure of the repeating unit, which is shown below, is identical to that reported for Klebsiella serotype-61 capsular polysaccharide. (formula; see text)  相似文献   

12.
The production of industrially relevant microbial polysaccharides has recently gained much interest. The capsular polysaccharide of Escherichia coli K4 is almost identical to chondroitin, a commercially valuable biopolymer that is so far obtained from animal tissues entailing complex and expensive extraction procedures. In the present study, the production of capsular polysaccharide by E. coli K4 was investigated taking into consideration a potential industrial application. Strain physiology was first characterized in shake flask experiments to determine the optimal culture conditions for the growth of the microorganism and correlate it to polysaccharide production. Results show that the concentration of carbon source greatly affects polysaccharide production, while the complex nitrogen source is mainly responsible for the build up of biomass. Small-scale batch processes were performed to further evaluate the effect of the initial carbon source concentration and of growth temperatures on polysaccharide production, finally leading to the establishment of the medium to use in following fermentation experiments on a bigger scale. The fed-batch strategy next developed on a 2-L reactor resulted in a maximum cell density of 56 gcww/L and a titre of capsular polysaccharide equal to 1.4 g/L, approximately ten- and fivefold higher than results obtained in shake flask and 2-L batch experiments, respectively. The release kinetics of K4 polysaccharide into the medium were also explored to gain insight into the mechanisms underlying a complex aspect of the strain physiology.  相似文献   

13.
Klebsiella K12 capsular polysaccharide has been investigated by the techniques of methylation, Smith degradation—periodate oxidation, uronic acid degradation, and partial hydrolysis, in conjunction with 1H-n.m.r. spectroscopy at 100 and 220 MHz, and 13C-n.m.r. spectroscopy at 20 MHz. The structure has been found to consist of the hexasaccharide repeating-unit shown, having a d-galactofuranosyl residue at the branch point. In this series, a d-galactofuranosyl residue has previously only been found in the polysaccharide from Klebsiella K41.
  相似文献   

14.
The use of methylation, periodate oxidation, β-elimination, and selective hydrolysis enabled the structure of the K80 polysaccharide to be determined. The nature of the anomeric linkages was established by 1H-n.m.r. spectroscopy, and confirmed by the results of oxidation of the fully acetylated polysaccharide with chromic acid. The K80 polysaccharide is comprised of repeating units of the pentasaccharide shown, and contains a pyruvic acetal on each repeating unit. This pattern constitutes the first instance, in this series of polysaccharides, of a pyruvic acetal attached to a side-chain rhamnosyl group.
  相似文献   

15.
The structure of the capsular polysaccharide from Klebsiella K26 has been determined by using the techniques of methylation, periodate oxidation, partial hydrolysis, and β-elimination. N.m.r. spectroscopy (1H and 13C) was used to establish the nature of the anomeric linkages and to identify oligosaccharides obtained by the different degradative techniques employed.The polysaccharide is comprised of repeating units of the heptasaccharide shown.
  相似文献   

16.
The structure of the capsular polysaccharide isolated from Klebsiella serotype K69 has been investigated by a combination of chemical and spectroscopic methods. The repeating structure of the deacetylated polysaccharide is shown to be of the "3 + 1 + 1" type, and it carries a 1-carboxyethylidene acetal at positions 4 and 6 of a terminal galactosyl group. The location of acetyl groups in the polysaccharide has not been established. The repeating unit of the deacetylated polysaccharide has the following structure. (Formula: see text).  相似文献   

17.
Non-linear capsular polysaccharides of klebsiella bacteria usually have a single side-chain per repeating unit, or, less commonly, two side-chains attached to the same unit. The capsular polysaccharide from Klebsiella serotype K60 is unique in having three side-chains in the heptasaccharide repeating-unit shown. The structure, including the configuration of the glycosidic linkages, was established mainly by characterization of the oligosaccharides obtained by partial hydrolysis of both the original, capsular polysaccharide and the polymer resulting from the removal, by smith degradation, of the side chains.
  相似文献   

18.
The structure of the capsular polysaccharide from E. coli O9:K37 (A 84a) has been studied, using methylation analysis, Smith degradation, and graded acid hydrolysis. The configurations at the anomeric centres were assigned by 1H-n.m.r. spectroscopy of the polysaccharide and its derivatives and oligosaccharide fragments. The polysaccharide has the following trisaccharide repeating-unit which is unique in the E. coli series of capsular polysaccharides in possessing a 1-carboxyethylidene group as the sole acidic function. (Formula: see text) E. coli capsular polysaccharides have been classified into seventy-four serotypes. The structures of about twenty of these polysaccharides have been elucidated, one of which, K29, has been reported to contain a 1-carboxyethylidene group. In continuation of a programme aimed at establishing the structural basis for the serology and immunochemistry of the E. coli capsular antigens, we now report on the structure of the capsular polysaccharide from E. coli O9:K37.  相似文献   

19.
Four bacteriophages were identified, which carry glycan hydrolases specific for the Escherichia coli K12 capsular polysaccharide. All these glycanases catalyze the hydrolysis of the alpha-L-rhamnosyl-1,5-beta-3-deoxy-D-manno-2-octulosonic acid linkage as demonstrated with a special thiobarbituric acid assay procedure, which discriminates between the C5 substituted and unsubstituted 3-deoxy-D-manno-2-octulosonic acid (dOclA). This assay, together with gel filtration, 1H-NMR and 13C-NMR spectroscopy showed that depolymerization led to the dimer of the K12 repeating unit, (,5-beta-dOcl1Ap-2,3-alpha-LRhap-1,2-alpha LRhap-1,)2, as the primary degradation product. The phages (phi 12-W, phi 12-S, phi 82-W1, phi 82-W2) were tested for their ability to infect Escherichia coli strains Su65-42 (O4:K12:H-) and CDC63-57 [O139:K82(12):H1]. phi 12-W and phi 12-S, respectively, infected strain Su65-42 only, phi 82-W2 CDC63-57 only, and phi 82-W1 both bacterial strains. These distinct host specificities cannot be explained by differences in the action of the glycanases, which depolymerize the capsules of both strains.  相似文献   

20.
The capsular polysaccharide from Klebsiella Serotype K40 contains D-galactose, D-mannose, L-rhamnose, and D-glucuronic acid in the ratios of 4:1:1:1. Methylation analysis of the native and carboxyl-reduced polysaccharide provided information about the glycosidic linkages in the repeating unit. Degradation of the permethylated polymer with base established the identity of the sugar unit preceding the glycosyluronic acid residue. The modes of linkages of different sugar residues were further confirmed by Smith degradation and partial hydrolysis of the K40 polysaccharide. The anomeric configurations of the different sugar residues were determined by oxidation of the peracetylated native and carboxyl-reduced polysaccharide with chromium trioxide. Based on all of these results, the heptasaccharide structure 1 was assigned to the repeating unit of the K40 polysaccharide. (Formula: see text)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号