首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
H+ transport in the collecting duct is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE fusion complexes through the H3 domain; only syntaxin 1A, through its H3 domain, also binds H+-ATPase. This raised the possibility that there are separate binding sites within the H3 domain of syntaxin 1A for H+-ATPase and for SNARE proteins. A series of truncations in the H3 domain of syntaxin 1A were made and expressed as glutathione S-transferase (GST) fusion proteins. We determined the amount of H+-ATPase and SNARE proteins in rat kidney homogenate that complexed with GST-syntaxin molecules. Full-length syntaxin isoforms and syntaxin-1AC [amino acids (aa) 1–264] formed complexes with H+-ATPase and SNAP23 and vesicle-associated membrane polypeptide (VAMP). A cassette within the H3 portion was found that bound H+-ATPase (aa 235–264) and another that bound SNAP23 and VAMP (aa 190–234) to an equivalent degree as full-length syntaxin. However, the aa 235–264 cassette alone without the SNARE N (aa 1–160) does not bind but requires ligation to the SNARE N to bind H+-ATPase. When this chimerical construct was transected into inner medullary collecting duct cells it inhibited intracellular pH recovery, an index of H+-ATPase mediated secretion. We conclude that within the H3 domain of syntaxin 1A is a unique cassette that participates in the binding of the H+-ATPase to the apical membrane and confers specificity of syntaxin 1A in the process of H+-ATPase exocytosis. soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins; exocytosis; H++ transport  相似文献   

2.
In previousstudies, our laboratory has utilized a cell line derived from the ratinner medullary collecting duct (IMCD) as a model system for mammalianrenal epithelial cell acid secretion. We have provided evidence, from aphysiological perspective, that acute cellular acidification stimulatesapical exocytosis and elicits a rapid increase in proton secretion thatis mediated by an H+-ATPase. Thepurpose of these experiments was to examine the effect of acutecellular acidification on the distribution of the vacuolar H+-ATPase in IMCD cells in vitro.We utilized the 31-kDa subunit of theH+-ATPase as a marker of thecomplete enzyme. The distribution of this subunit of theH+-ATPase was evaluated byimmunohistochemical techniques (confocal and electron microscopy), andwe found that there is a redistribution of these pumps from vesicles tothe apical membrane. Immunoblot evaluation of isolated apical membranerevealed a 237 ± 34% (P < 0.05, n = 9) increase in the 31-kDa subunitpresent in the membrane fraction 20 min after the induction of cellularacidification. Thus our results demonstrate the presence of this pumpsubunit in the IMCD cell line in vitro and that cell acidificationregulates the shuttling of cytosolic vesicles containing the 31-kDasubunit into the apical membrane.  相似文献   

3.
When microsomal membranes from maize (Zea mays L. cv. Clipper)coleoptiles were separated by isopyc-nic centrifugation on acontinuous 10–45% sucrose gradient, bafilomycin A1-inhibitedATPase activity co-localized with the activities of the tonoplastmarker-enzymes, nitrate-Inhibited ATPase and K+-dependent pyrophosphatase.Thus, bafilomycin A1 is a specific inhibitor of the vacuolarH+-ATPase of maize coleoptiles. Inhibition of the vacuolar H+-ATPaseby bafilomycin A1 was strictly dependent upon the concentrationof the enzyme present in the assay medium, suggesting a stoichiometricassociation between bafilomycin A1 and the vacuolar H+-ATPase.In tonoplast-enriched preparations, half-maximal inhibitionwas obtained at 43 pmol bafilomycin A1 mg–1 protein. BafilomycinA1 inhibited the vacuolar H+-ATPase in a simple non-competitivemanner: increasing bafilomycin A1 concentrations reduced theVmax, of the H+ -ATPase, but had no effect on its Km towardsATP. Key words: Bafilomycin A1, coleoptile, H+-ATPase (vacuolar), maize, Zea mays L  相似文献   

4.
Intercalated and inner medullary collecting duct (IMCD) cells of the kidney mediate the transport of H+ by a plasma membrane H+-ATPase. The rate of H+ transport in these cells is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. We have shown that the exocytic insertion of proton pumps (H+-ATPase) into the apical membrane of rat IMCD cells, in culture, involves SNARE proteins (syntaxin (synt), SNAP-23, and VAMP). The membrane fusion complex observed in IMCD cells with the induction of proton pump exocytosis not only included these SNAREs but also the H+-ATPase. Based on these observations, we suggested that the targeting of these vesicles to the apical membrane is mediated by an interaction between the H+-ATPase and a specific t-SNARE. To evaluate this hypothesis, we utilized a "pull-down" assay in which we identified, by Western analysis, the proteins in a rat kidney medullary homogenate that complexed with glutathione S-transferase (GST) fusion syntaxin isoforms attached to Sepharose 4B-glutathione beads. The syntaxin isoforms employed were 1A, 1B, 2, 4, 5, and also 1A that was truncated to exclude the H3 SNARE binding domain (synt-1ADeltaH3). All full-length syntaxin isoforms formed complexes with SNAP-23 and VAMP. Neither GST nor synt-1ADeltaH3 formed complexes with these SNAREs. H+-ATPase (subunits E, a, and c) bound to syntaxin-1A and to a lesser extent to synt-1B but not to synt-1ADeltaH3 or synt-2, -4, and -5. In cultured IMCD cells transfected to express syntaxin truncated for the membrane binding domain (synt-DeltaC), expression of synt-1ADeltaC, but not synt-4DeltaC, inhibited H+-ATPase exocytosis. In conclusion, because all full-length syntaxins examined bound VAMP-2 and SNAP-23, but only non-H3-truncated syntaxin-1 bound H+-ATPase, and synt-1ADeltaC expression by intact IMCD cells inhibited H+-ATPase exocytosis, it is likely that the H+-ATPase binds directly to the H3 domain of syntaxin-1 and not through VAMP-2 or SNAP-23. Interaction between the syntaxin-1A and H+-ATPase is important in the targeted exocytosis of the proton pump to the apical membrane of intercalated cells.  相似文献   

5.
The fatty acid composition of phospholipids in the microsomesand the vanadate-sensitive H+-ATPase activity of the roots ofone-year-old Scots pine (Pinus sylvestris L.) seedlings werestudied during flushing in spring. The seedlings in hydroponiccultures were subjected to different root temperatures (5, 12or 20°C). The shoot was maintained at 20/15° C (day/night)during the 35 d experiment. After 35 d at 5° C, root growthwas totally inhibited and shoot growth partly inhibited. In roots grown at 5° C the fatty acid composition of themicrosomal phospholipids and the degree of fatty acid unsaturation(bond index) were unchanged, while in roots grown at 12 and20° C the fatty acid composition changed and bond indexdecreased. At those root temperatures, the most obvious changewas a decline in the proportion of linolenic acid (C18:3). Inthe new white roots grown either at 12°C or 20°C theproportion of C18:2 was higher and the proportion of C18:3 lowerthan in 1-year-old roots. Independently of root temperature,H+-ATPase activity, determined on a fresh weight basis, declinedto half of the original activity during the experiment. Thedecline in H+ -ATPase activity was most rapid during the firstweek. In the old roots the decline in H+-ATPase activity followedclosely the decline in amount of membrane protein. In new rootsH+-ATPase activity was high and increased with increasing roottemperature. These results suggest that in the roots of Scotspine seedlings, vanadate-sensitive H+-ATPase activity is dependenton age, while changes in the microsomal fatty acid compositionof phospholipids are regulated mainly by root temperature. Key words: Fatty acids of phospholipids, microsomes, H+-ATPase, root temperature, Scots pine  相似文献   

6.
Secretion of cerebrospinal fluid by the choroid plexus canbe inhibited by its cholinergic innervation. We demonstrated that carbachol inhibits the Na+-K+-ATPase in bovinechoroid tissue slices and investigated the mechanism. Many of theactions of cholinergic agents are mediated by nitric oxide (NO), whichplays important roles in fluid homeostasis. The inhibition ofNa+-K+-ATPase was blocked by the NO synthaseinhibitor [N-nitro-L-argininemethyl ester] and was quantitatively mimicked by the NO agonistssodium nitroprusside (SNP) and diethylenetriamine NO. Inhibition by SNPcorrelated with an increase in tissue cGMP and was abolished by1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase. Inhibition was mimicked bythe protein kinase G activator 8-bromo-cGMP and by okadaic acid, aninhibitor of protein phosphatases 1 and 2A. cGMP-dependent proteinkinase inhibitors Rp-8-pCPT-cGMP (0.5-5 µM) and KT-5823 (2.0 µM) did not block the effects of SNP, but higher concentrations ofthe more selective inhibitor (Rp-8-pCPT-cGMP) had a pharmacological inhibitory effect on Na+-K+-ATPase. The datasuggest that cholinergic regulation of theNa+-K+-ATPase is mediated by NO and involvesactivation of guanylate cyclase and elevation of cGMP.

  相似文献   

7.
cDNA encoding the plasma membrane H+-ATPase of guard cells ofVicia faba L. was isolated. The clone encoded a 105-kDa polypeptide(956 amino acids) that was 79–85% identical in terms ofamino acid sequence to other plant H+-ATPases. High levels ofmRNA explain the high H+-ATPase activity of these plasma membranes. (Received December 24, 1994; Accepted April 12, 1995)  相似文献   

8.
In Aplysia intestine,stimulation of Na+ absorption withluminal alanine increases apical membraneK+ conductance(GK,a), whichpresumably regulates enterocyte volume during stimulatedNa+ absorption. However, themechanism responsible for the sustained increase in plasma membraneK+ conductance is not known forany nutrient-absorbing epithelium. In the present study, we have begunto test the hypothesis that the alanine-induced increase inGK,a inAplysia enterocytes results fromexocytic insertion of K+ channelsinto the apical membrane. We used the fluid-phase marker horseradishperoxidase to assess the effect of alanine on apical membraneexocytosis and conventional microelectrode techniques to assess theeffect of alanine on fractional capacitance of the apical membrane(fCa). Luminalalanine significantly increased apical membrane exocytosis from 1.04 ± 0.30 to 1.39 ± 0.38 ng · min1 · cm2.To measure fCa,we modeled the Aplysia enterocyte as adouble resistance-capacitance (RC) electric circuit arranged in series. Several criteria were tested to confirm application of the model to theenterocytes, and all satisfied the model. When added to the luminalsurface, alanine significantly increasedfCa from 0.27 ± 0.02 to 0.33 ± 0.04 (n = 10)after 4 min. There are two possible explanations for our findings:1) the increase in exocytosis, whichadds membrane to the apical plasma membrane, prevents plasma membranefracture, and 2) the increase inexocytosis delivers K+ channels tothe apical membrane by exocytic insertion. After the alanine-induceddepolarization of apical membrane potential (Va), there isa strong correlation (r = 0.96)between repolarization ofVa, whichreflects the increase inGK,a, andincrease in fCa. This correlation supports the exocytic insertion hypothesis for activation ofGK,a.

  相似文献   

9.
At high external pH, the Chara membrane is known to switch toa new state in which the membrane potential is highly negative;it has been characterized as a passive diffusion potential forH+ (or 0H). DCCD is shown to inhibit the increased conductanceand the highly negative membrane potential associated with thisstate. DCCD also inhibits the plasmalemma H+-ATPase, as wellas cytoplasmic streaming. The alkaline state of the membraneis shown to involve a decreased permeability to K+; this enhancesthe selectivity for H+ (or OH) which results from theincreased permeability to H+ (or OH). Altering the cytoplasmicpH affects the membrane potential at both neutral and alkalinepH. It can also affect the ability of the cell to make the transitionto the alkaline state.  相似文献   

10.
Bundgaard, Henning, Thomas A. Schmidt, Jim S. Larsen, andKeld Kjeldsen. K+supplementation increases muscle[Na+-K+-ATPase]and improves extrarenal K+homeostasis in rats. J. Appl. Physiol.82(4): 1136-1144, 1997.Effects ofK+ supplementation (~200 mmolKCl/100 g chow) on plasma K+,K+ content, andNa+-K+-adeonsinetriphosphatase(ATPase) concentration([Na+-K+-ATPase])in skeletal muscles as well as on extrarenalK+ clearance were evaluated inrats. After 2 days of K+supplementation, hyperkalemia prevailed(K+-supplemented vs.weight-matched control animals) [5.1 ± 0.2 (SE) vs. 3.2 ± 0.1 mmol/l, P < 0.05, n = 5-6], and after 4 daysa significant increase in K+content was observed in gastrocnemius muscle (104 ± 2 vs. 97 ± 1 µmol/g wet wt, P < 0.05, n = 5-6). After 7 days ofK+ supplementation, a significantincrease in[3H]ouabain bindingsite concentration (344 ± 5 vs. 239 ± 8 pmol/g wet wt,P < 0.05, n = 4) was observed in gastrocnemiusmuscle. After 2 wk, increases in plasmaK+,K+ content, and[3H]ouabain bindingsite concentration in gastrocnemius muscle amounted to 40, 8, and 68%(P < 0.05) above values observed inweight-matched control animals, respectively. The latter change wasconfirmed by K+-dependentp-nitrophenyl phosphatase activitymeasurements. Fasting for 1 day reduced plasmaK+ andK+ content in gastrocnemius musclein rats that had been K+supplemented for 2 wk by 3.1 ± 0.3 mmol/l(P < 0.05, n = 5) and 15 ± 2 µmol/g wet wt(P < 0.05, n = 5), respectively. After induction of anesthesia, arterial plasma K+was measured during intravenous KCl infusion (0.75 mmolKCl · 100 g bodywt1 · h1).The K+-supplemented fasted groupdemonstrated a 42% (P < 0.05) lower plasma K+ rise, associated with asignificantly higher increase inK+ content in gastrocnemius muscleof 7 µmol/g wet wt (P < 0.05, n = 5) compared with their controlanimals. In conclusion, K+supplementation increases plasmaK+,K+ content, and[Na+-K+-ATPase]in skeletal muscles and improves extrarenalK+ clearance capacity.

  相似文献   

11.
Cucumber (Cucumis sativus L.) seedlings were grafted onto cucumber-(CG) or figleaf gourd- (FG, Cucurbita ficifolia Bouché)seedlings in order to determine the effect of solution temperature(12, 22, and 32°C) on the mineral composition of xylem sapand the plasma membrane K+-Mg++-ATPase activities of the roots.Low solution temperature (12°C) lowered the concentrationof NO3 and H2PO4 in xylem sap of CG plants butnot of FG plants. Concentrations of K+, Ca++ and Mg++ in xylemsap were less affected than anions by solution temperature.The plasma membrane of FG plants grown in 12°C solutiontemperature showed the highest K+- Mg++-ATPase activity at allATP concentrations up to 3 mM and at low reaction temperatureup to 12°C, indicating resistance of figleaf gourd to lowroot temperature. (Received December 27, 1994; Accepted March 10, 1995)  相似文献   

12.
Extracellular K+ concentration ([K+]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K+ was moderately reduced from a control diet (1.0% K+) to a 0.33% K+ diet for 15 days. Although body weight and baseline plasma [K+] (4.0 mM) were not reduced in the 0.33% K+ group, regulatory responses to conserve plasma [K+] were evident in both muscle and kidney. Insulin-stimulated clearance of K+ from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin·(50 mU·kg–1·min–1), plasma [K+] level fell to 3.2 ± 0.1 mM in the 1.0% K+ diet group and to only 3.47 ± 0.07 mM in the 0.33% K+ diet group (P < 0.01) with no reduction in urinary K+ excretion, which is evidence of insulin resistance to cellular K+ uptake. Insulin-stimulated cellular K+ uptake was quantitated by measuring the K+ infusion rate necessary to clamp plasma K+ at baseline (in µmol·kg–1·min–1) during 5 mU of insulin·kg–1·min–1 infusion: 9.7 ± 1.5 in 1% K+ diet was blunted to 5.2 ± 1.7 in the 0.33% K+ diet group (P < 0.001). Muscle [K+] and Na+-K+-ATPase activity and abundance were unchanged during the 0.33% K+ diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 ± 10.5 µmol/h/animal (1% K+ diet) to 24.2 ± 1.7 µmol/h/animal (0.33% K+ diet) (P < 0.001). There was no significant change in total abundance of key renal K+ transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K+ vs. 1% K+ diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K+] can be maintained during modest K+ restriction due to a decrease in insulin-stimulated cellular K+ uptake as well as renal K+ conservation mediated by inactivation of ROMK, both without a detectable change in plasma [K+]. The error signals inciting and maintaining these responses remain to be identified. potassium homeostasis; Na+-K+-ATPase; H+-K+-ATPase; protein tyrosine kinase; cSrc  相似文献   

13.
Plasma Membrane H+-ATPase in Guard-Cell Protoplasts from Vicia faba L.   总被引:2,自引:0,他引:2  
The activity of plasma membrane H+-ATPase was measured withmembrane fragments of guard-cell protoplasts isolated from Viciafaba L. ATP hydrolytic activity was slightly inhibited by oligomycinand ammonium molybdate, and markedly inhibited by NO3and vanadate. In the presence of oligomycin, ammonium molybdateand NO3, the ATP-hydrolyzing activity was strongly inhibitedby vanadate. It was also inhibited by diethylstilbestrol (DES),p-chloromercuribenzoic acid (PCMB) and Ca2+, but slightly stimulatedby carbonyl cyanide m-chlorophenylhydrazone (CCCP). The acitivityhad higher specificity for ATP as a substrate than other phosphoricesters such as ADP, AMP, GTP and p-nitrophenylphosphate; theKm was 0.5 mM for ATP. The activity required Mg2+ but was notaffected by K+, and it was maximal around pH 6.8. When guard-cellprotoplasts were used instead of membrane fragments, the ATPaseactivity reached up to 800µmol Pi.(mg Chl)–1.h–1in the presence of lysolecithin. These results indicate thatthe guard cell has a high plasma membrane H+-ATPase activity. (Received December 23, 1986; Accepted April 28, 1987)  相似文献   

14.
We studied the K+-selective conductances in primary cultures of rat renal inner medullary collecting duct (IMCD) using perforated-patch and conventional whole cell techniques. Depolarizations above –20 mV induced a time-dependent outward K+ current (Ivto) similar to a delayed rectifier. Ivto showed a half-maximal activation around 5.6 mV with a slope factor of 6.8 mV. Its K+/Na+ selectivity ratio was 11.7. It was inhibited by tetraethylammonium, quinidine, 4-aminopyridine, and Ba2+ and was not Ca2+ dependent. The delayed rectifying characteristics of Ivto prompted us to screen the expression of Kv1 and Kv3 families by RT-PCR. Analysis of RNA isolated from cell cultures revealed the presence of three Kv -subunits (Kv1.1, Kv1.3, and Kv1.6). Western blot analysis with Kv -subunit antibodies for Kv1.1 and Kv1.3 showed labeling of 70-kDa proteins from inner medulla plasmatic and microsome membranes. Immunocytochemical analysis of cell culture and kidney inner medulla showed that Kv1.3 is colocalized with the Na+-K+-ATPase at the basolateral membrane, although it is also in the cytoplasm. This is the first evidence of recording, protein expression, and localization of a voltage-gated Kv1 in the kidney IMCD cells. kidney; Kv1.3; potassium channel; potassium transport; whole cell clamp; immunocytochemistry; confocal microscopy  相似文献   

15.
Cochlear endolymph has a highly positive potential of approximately +80 mV known as the endocochlear potential (EP). The EP is essential for hearing and is maintained by K+ circulation from perilymph to endolymph through the cochlear lateral wall. Various K+ transport apparatuses such as the Na+,K+-ATPase, the Na+-K+-2Cl cotransporter, and the K+ channels Kir4.1 and KCNQ1/KCNE1 are expressed in the lateral wall and are known to play indispensable roles in cochlear K+ circulation. The gastric type of the H+,K+-ATPase was also shown to be expressed in the cochlear lateral wall (Lecain E, Robert JC, Thomas A, and Tran Ba Huy P. Hear Res 149: 147–154, 2000), but its functional role has not been well studied. In this study we examined the precise localization of H+,K+-ATPase in the cochlea and its involvement in formation of EP. RT-PCR analysis showed that the cochlea expressed mRNAs of gastric 1-, but not colonic 2-, and -subunits of H+,K+-ATPase. Immunolabeling of an antibody specific to the 1 subunit was detected in type II, IV, and V fibrocytes distributed in the spiral ligament of the lateral wall and in the spiral limbus. Strong immunoreactivity was also found in the stria vascularis. Immunoelectron microscopic examination exhibited that the H+,K+-ATPase was localized exclusively at the basolateral site of strial marginal cells. Application of Sch-28080, a specific inhibitor of gastric H+,K+-ATPase, to the spiral ligament as well as to the stria vascularis caused prominent reduction of EP. These results may imply that the H+,K+-ATPase in the cochlear lateral wall is crucial for K+ circulation and thus plays a critical role in generation of EP. hydrogen, potassium-adenosine triphosphatase; stria vascularis; spiral ligament  相似文献   

16.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

17.
Inoue, H. and Katoh, Y. 1987. Calcium inhibitsion-stimulatedstomatal opening in epidermal strips of Commelina communis L.—J.exp. Bot. 38: 142–149. Ca2+ suppressed both the ion-stimulated stomatal opening andH+ extrusion of pre-illuminated epidermal strips isolated fromCommelina communis L. In the absence of Ca2+, the rate of H+release was 18 nmol H+ cm–2 h–1 per epidermal stripunit area in 150 mol m–3 KCL at pH 7?4. Half-maximum inhibitionof stomatal opening was observed with 220 mmol m–3 ofCa2+. The hexavalent dye, ruthenium red, showed concentration-dependentprevention of the inhibition by Ca2+ of the ion-stimulated stomatalopening. The effect of ruthenium red was non-competitive, andthe K1 for the calcium inhibition was found to be 3?6 mmol m–3.The calcium inhibition of H+ extrusion was also prevented byruthenium red. These results suggest that Ca2+ inhibits theactivity of electrogenic H+ translocating ATPase of the guardcell plasma membrane and leads to the suppression of stomatalopening. Key words: Calcium, Commelina communis, ruthenium red, stomata  相似文献   

18.
The effects of the growth in a medium containing NH4NO3 as nitrogensource were studied on cell sap pH, cytoplasmic pH and malatecontent in chl1, an Arabidopsis thaliana mutant impaired inchlorate and nitrate transport. In all the conditions testedthe pH of the cytoplasm in chl1 was more alkaline, and thatof the vacuole was more acidic as compared with those measuredin wt. Treatment with bafilomycin A1, a specific inhibitor ofthe vacuolar H+-ATPase, induced a small alkalinization of thevacuole, and a significant acidification of the cytoplasm, theseeffects being greater in chl1 than in wt. The greater responseof the mutant to bafilomycin Al suggests that, in the absenceof the inhibitor, the activity of the tonoplast H+-ATPase inchl1 is higher than in wt, this diversity being a possible reasonfor the differences in intracellular pH detected between thetwo strains. A possible role for the vacuolar H+-ATPase in regulatingthe cytoplasmic pH is discussed. (Received August 2, 1995; Accepted February 1, 1996)  相似文献   

19.
Tonoplast vesicles were prepared from potato tubers (Solariumtuberosum L.) on a step gradient (0% and 6%, w/w) of dextranT-70 to clarify the mechanism by which the tonoplast H+-ATPaseis inactivated by gamma-irradiation. H+-ATPase activity andH+ -pumping were examined after irradiation of tubers (in vivoirradiation) and of isolated tonoplast vesicles (in vitro irradiation)at doses up to 1.0 kGy. Both in vivo irradiation and in vitroirradiation resulted in significant decreases in ATPase andH+-pumping activities. The ATPase and H+-pumping activities12 h after irradiation were much lower than those 2 h afterirradiation. Solubilized H+-ATPase was inactivated, in a dose-dependentmanner, by irradiation (enzyme irradiation) to a greater extentthan was observed after in vitro irradiation or in vivo irradiation.The activity of ATPase 12 h after enzyme irradiation was almostthe same as it was 2 h after enzyme irradiation. The free fattyacid content of vacuolar membranes was increased by in vivoirradiation and by in vitro irradiation with an accompanyingdecrease in tonoplast H+-ATPase activity. Lipids from irradiatedtonoplasts had a considerable inhibitory effect on the activityof solubilized H+-ATPase. This result suggests that the directinactivation of H+-ATPase in potato tonoplast by gamma-irradiationis augmented by the effects of deterioration of membrane lipidsthat is induced by the irradiation. (Received December 21, 1994; Accepted May 16, 1994)  相似文献   

20.
Initiation of intestinal Na+-glucose cotransport results intransient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has beenimplicated in volume regulation after physiological cell swelling, wehypothesized that Na+/H+ exchange might also berequired for Na+-glucose cotransport-dependent tightjunction regulation. In Caco-2 monolayers with activeNa+-glucose cotransport, inhibition ofNa+/H+ exchange with 200 µM5-(N,N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed thatinhibition of the Na+/H+ exchanger 3 (NHE3)isoform was most closely related to TER increases. TER increases due toNHE3 inhibition were related to cytoplasmic acidification becausecytoplasmic alkalinization with 5 mM NH4Cl prevented bothcytoplasmic acidification and TER increases. However, NHE3 inhibitiondid not affect TER when Na+-glucose cotransport wasinhibited. Myosin II regulatory light chain (MLC) phosphorylationdecreased up to 43 ± 5% after inhibition ofNa+/H+ exchange, similar to previous studiesthat associate decreased MLC phosphorylation with increased TER afterinhibition of Na+-glucose cotransport. However, NHE3inhibitors did not diminish Na+-glucose cotransport. Thesedata demonstrate that inhibition of NHE3 results in decreased MLCphosphorylation and increased TER and suggest that NHE3 may participatein the signaling pathway of Na+-glucosecotransport-dependent tight junction regulation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号