首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Pancreatic amyloid deposits, composed of the 37 amino acid residue peptide amylin, represent an integral part of type 2 diabetes mellitus pathology. Human amylin (hA) forms fibrils in vitro and is toxic to cultured pancreatic islet beta-cells. In contrast, rat amylin (rA) which differs from hA by only six amino acid residues in the central region of the peptide, residues 18-29, does not form fibrils and is not cytotoxic. To elucidate the role of individual residues in fibril formation, we have generated a series of full-length rA variants and examined their ability to form fibrils in vitro. Single-residue substitutions with amino acids from corresponding positions of the hA sequence, i.e. R18H, L23F, or V26I, were sufficient to render rA competent for fibril formation albeit at a small yield. Combining two or three of these substitutions generally increased the ability to produce fibrils. Variant rA fibril morphologies were examined by negative stain electron microscopy and found to be similar to those generated by hA itself. Bulk assays, i.e. involving thioflavin-T fluorescence and sedimentation, showed that the amount of fibril formation was relatively small for these rA variants when compared to hA under the same conditions. Fibril growth was demonstrated by time-lapse atomic force microscopy, and MALDI-TOF mass spectrometry was used to verify that fibrils consisted of full-length peptide. Our observations confirm previous reports that the three proline residues play a dominant negative role in fibril formation. However, their presence is not sufficient to completely abolish the ability of rA to form fibrils, as each of the other three implicated residues (i.e. R18, L23 and V26) also has a dominant modulating effect.  相似文献   

2.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

3.
Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in the pancreas of over 90% of all cases of type-2 diabetes. We have generated a series of overlapping hexapeptides to target an amyloidogenic region of IAPP (residues 20-29) and examined their effects on fibril assembly. Peptide fragments corresponding to SNNFGA (residues 20-25) and GAILSST (residues 24-29) were strong inhibitors of the beta-sheet transition and amyloid aggregation. Circular dichroism indicated that even at 1:1 molar ratios, these peptides maintained full-length IAPP (1-37) in a largely random coil conformation. Negative stain electron microscopy revealed that co-incubation of these peptides with IAPP resulted in the formation of only semi-fibrous aggregates and loss of the typical high density and morphology of IAPP fibrils. This inhibitory activity, particularly for the SNNFGA sequence, also correlated with a reduction in IAPP-induced cytotoxicity as determined by cell culture studies. In contrast, the peptide NFGAIL (residues 22-27) enhanced IAPP fibril formation. Conversion to the amyloidogenic beta-sheet was immediate and the accompanying fibrils were more dense and complex than IAPP alone. The remaining peptide fragments either had no detectable effects or were only weakly inhibitory. Specificity of peptide activity was illustrated by the fragments, SSNNFG and AILSST. These differed from the most active inhibitors by only a single amino acid residue but delayed the random-to-beta conformational change only when used at higher molar ratios. This study has identified internal IAPP peptide fragments which can regulate fibrillogenesis and may be of therapeutic use for the treatment of type-2 diabetes.  相似文献   

4.
The ABri is a 34 residue peptide that is the major component of amyloid deposits in familial British dementia. In the amyloid deposits, the ABri peptide adopts aggregated beta-pleated sheet structures, similar to those formed by the Abeta peptide of Alzheimer's disease and other amyloid forming proteins. As a first step toward elucidating the molecular mechanisms of the beta-amyloidosis, we explored the ability of the environmental variables (pH and peptide concentration) to promote beta-sheet fibril structures for synthetic ABri peptides. The secondary structures and fibril morphology were characterized in parallel using circular dichroism, atomic force microscopy, negative stain electron microscopy, Congo red, and thioflavin-T fluorescence spectroscopic techniques. As seen with other amyloid proteins, the ABri fibrils had characteristic binding with Congo red and thioflavin-T, and the relative amounts of beta-sheet and amyloid fibril-like structures are influenced strongly by pH. In the acidic pH range 3.1-4.3, the ABri peptide adopts almost exclusively random structure and a predominantly monomeric aggregation state, on the basis of analytical ultracentrifugation measurements. At neutral pH, 7.1-7.3, the ABri peptide had limited solubility and produced spherical and amorphous aggregates with predominantly beta-sheet secondary structure, whereas at slightly acidic pH, 4.9, spherical aggregates, intermediate-sized protofibrils, and larger-sized mature amyloid fibrils were detected by atomic force microscopy. With aging at pH 4.9, the protofibrils underwent further association and eventually formed mature fibrils. The presence of small amounts of aggregated peptide material or seeds encourage fibril formation at neutral pH, suggesting that generation of such seeds in vivo could promote amyloid formation. At slightly basic pH, 9.0, scrambling of the Cys5-Cys22 disulfide bond occurred, which could lead to the formation of covalently linked aggregates. The presence of the protofibrils and the enhanced aggregation at slightly acidic pH is consistent with the behavior of other amyloid-forming proteins, which supports the premise that a common mechanism may be involved in protein misfolding and beta-amyloidosis.  相似文献   

5.
We have examined a series of overlapping peptide fragments from the 8-20 region of human islet amyloid polypeptide (IAPP) with the objective of defining the smallest fibril-forming domain. Peptide fragments corresponding to LANFLV (residues 12-17) and FLVHSS (residues 15-20) were strong enhancers of beta-sheet transition and fibril formation. Negative stain electron microscopy illustrated the ability of these peptide fragments to form fibrils independently when incubated alone in solution. Circular dichroism analysis revealed that when full-length human IAPP was incubated in the presence of these two fragments, fibrillogenesis was accelerated. While the two fragments, LANFLV and FLVHSS, were able to enhance the recruitment of additional IAPP molecules during fibril formation, the "seeding" activity of these peptides had no effect on altering IAPP-induced cytotoxcity as determined by cell culture studies. Therefore, this study has identified two internal IAPP peptide fragments within the 8-20 domain that may have a role in enhancing the folding and aggregation of human IAPP. These fragments are the smallest sequences identified, within the 8-20 region of hIAPP, that can independently form fibrils, and that can interact with IAPP to assemble into fibrils with characteristics similar as those formed by human IAPP alone.  相似文献   

6.
Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state.  相似文献   

7.
The N-terminal fragment 1-29 of horse heart apomyoglobin (apoMb(1-29)) is highly prone to form amyloid-like fibrils at low pH. Fibrillogenesis at pH 2.0 occurs following a nucleation-dependent growth mechanism, as evidenced by the thioflavin T (ThT) assay. Transmission electron microscopy (TEM) confirms the presence of regular amyloid-like fibrils and far-UV circular dichroism (CD) spectra indicate the acquisition of a high content of beta-sheet structure. ThT assay, TEM and CD highlight fast and complete disaggregation of the fibrils, if the pH of a suspension of mature fibrils is increased to 8.3. It is of interest that amyloid-like fibrils form again if the pH of the solution is brought back to 2.0. While apoMb(1-29) fibrils obtained at pH 2.0 are resistant to proteolysis by pepsin, the disaggregated fibrils are easily cleaved at pH 8.3 by trypsin and V8 protease, and some of the resulting fragments aggregate very quickly in the proteolysis mixture, forming amyloid-like fibrils. We show that the increase of amyloidogenicity of apoMb(1-29) following acidification or proteolysis at pH 8.3 can be attributed to the decrease of the peptide net charge following these alterations. The results observed here for apoMb(1-29) provide an experimental basis for explaining the effect of charge and pH on amyloid fibril formation by both unfolded and folded protein systems.  相似文献   

8.
Parkinson disease and other progressive neurodegenerative conditions are characterized by the intracerebral presence of Lewy bodies, containing amyloid fibrils of α-synuclein. We used cryo-electron microscopy and scanning transmission electron microscopy (STEM) to study in vitro-assembled fibrils. These fibrils are highly polymorphic. Focusing on twisting fibrils with an inter-crossover spacing of 77 nm, our reconstructions showed them to consist of paired protofibrils. STEM mass per length data gave one subunit per 0.47 nm axial rise per protofibril, consistent with a superpleated β-structure. The STEM images show two thread-like densities running along each of these fibrils, which we interpret as ladders of metal ions. These threads confirmed the two-protofibril architecture of the 77-nm twisting fibrils and allowed us to identify this morphotype in STEM micrographs. Some other, but not all, fibril morphotypes also exhibit dense threads, implying that they also present a putative metal binding site. We propose a molecular model for the protofibril and suggest that polymorphic variant fibrils have different numbers of protofibrils that are associated differently.  相似文献   

9.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.  相似文献   

10.
Collagen fibrils are the principal tensile element of vertebrate tissues where they occur in the extracellular matrix as spatially organised arrays. A major challenge is to understand how the mechanisms of nucleation, growth and remodelling yield fibrils of tissue-specific diameter and length. Here we have developed a seeding system whereby collagen fibrils were isolated from avian embryonic tendon and added to purified collagen solution, in order to characterise fibril surface nucleation and growth mechanisms. Fragmentation of tendon in liquid nitrogen followed by Dounce homogenisation generated fibril length fragments. Most (> 94%) of the fractured ends of fibrils, which show an abrupt square profile, were found to act as nucleation sites for further growth by molecular accretion. The mechanism of this nucleation and growth process was investigated by transmission electron microscopy, atomic force microscopy and scanning transmission electron microscopy mass mapping. Typically, a single growth spur occurred on the N-terminal end of seed fibrils whilst twin spurs frequently formed on the C-terminal end before merging into a single tip projection. The surface nucleation and growth process generated a smoothly tapered tip that achieved maximum diameter when the axial extension reached ∼ 13 μm. Lateral growth also occurred along the entire length of all seed fibrils that contained tip projections. The data support a model of collagen fibril growth in which the broken ends of fibrils are nucleation sites for propagation in opposite axial directions. The observed fibril growth behaviour has direct relevance to tendon matrix remodelling and repair processes that might involve rupture of collagen fibrils.  相似文献   

11.
Islet amyloid polypeptide (IAPP; amylin) is responsible for amyloid formation in type-2 diabetes. Not all organisms form islet amyloid, and amyloid formation correlates strongly with variations in primary sequence. Studies of human and rodent IAPP have pointed to the amino acid residues 20-29 region as the important amyloid-modulating sequence. The rat 20-29 sequence contains three proline residues and does not form amyloid, while the human sequence contains no proline and readily forms amyloid. This has led to the view that the 20-29 region constitutes a critical amyloidogenic domain that dictates the properties of the entire sequence. The different behavior of human and rat IAPP could be due to differences in the 20-29 region or due simply to the fact that multiple proline residues destabilize amyloid fibrils. We tested how critical the 20-29 region is by studying a variant identical with the human peptide in this segment but with three proline residues outside this region. We designed a variant of the amyloidogenic 8-37 region of human IAPP (hIAPP(8-37) 3xP) with proline substitutions at positions 17, 19 and 30. Compared to the wild-type, the 3xP variant was much easier to synthesize and had dramatically greater solubility. Fourier transform infra red spectroscopy, transmission electron microscopy, Congo red staining and thioflavin-T binding indicate that this variant has a reduced tendency to form beta-sheet structure and forms deposits with much less structural order than the wild-type. Far-UV CD studies show that the small amount of beta-sheet structure developed by hIAPP(8-37) 3xP after long periods of incubation dissociates readily into random-coil structure upon dilution into Tris buffer. The observation that proline substitutions outside the putative core domain effectively abolish amyloid formation indicates that models of IAPP aggregation must consider contributions from other regions.  相似文献   

12.
Multiple assembly pathways underlie amyloid-beta fibril polymorphisms   总被引:1,自引:0,他引:1  
The amyloid beta-protein transiently forms low and high molecular mass oligomers and protofibrils in vitro, and after longer incubation times assembles into polymorphic mature fibrils. The precursor-to-product relationship of these species remains to be understood. Protofibrils are up to approximately 600 nm in length and have mass-per-lengths of 19(+/-2) kDa/nm measured by scanning transmission electron microscopy. Two predominant mature fibril types, several microns in length and with mass-per-lengths of 18(+/-3) and 27(+/-3) kDa/nm, are identified after longer incubation times. The difference of approximately 9 kDa/nm between the two fibril types indicates a bona fide elementary protofilament subunit of this mass-per-length. Fibrils in the 18(+/-3) kDa/nm group often exhibited distinct coiling with axial cross-over spacings of approximately 25 nm. Although strikingly different in morphology, the mass-per-length (MPL) of these coiled fibrils is equivalent to that measured for protofibrils. They could therefore arise from a conformational change in the protofibril concurrent with coiling and rapid elongation. Alternatively, we cannot rule out an assembly pathway not directly related to protofibrils. In contrast, the 27(+/-3) kDa/nm fibrils correspond to a MPL of approximately 1.5 x the protofibril and thus can neither arise from a simple conformational transition nor from lateral association of 19 kDa/nm protofibril precursors. Twisted ribbons with axial periodicities ranging from approximately 80 nm to 130 nm were prominent in the 27(+/-3) kDa/nm group as well as more tightly coiled fibrils. Individual fibril ribbons had elongation rates of 20(+/-12) nm/min when imaged by time-lapse atomic force microscopy. Protofibrils exhibited growth rates approximately 15 x slower at 1.3(+/-0.5) nm/min. The data support a model where concurrent multiple assembly pathways give rise to the various polymorphic fibril types.  相似文献   

13.
Extracellular accumulation of transthyretin (TTR) variants in the form of fibrillar amyloid deposits is the pathological hallmark of familial amyloidotic polyneuropathy (FAP). The TTR Leu55Pro variant occurs in the most aggressive forms of this disease. Inhibition of TTR wild-type (WT) and particularly TTR Leu55Pro fibril formation is of interest as a potential therapeutic strategy and requires a thorough understanding of the fibril assembly mechanism. To this end, we report on the in vitro assembly properties as observed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and quantitative scanning transmission electron microscopy (STEM) for both TTR WT fibrils produced by acidification, and TTR Leu55Pro fibrils assembled at physiological pH. The morphological features and dimensions of TTR WT and TTR Leu55Pro fibrils were similar, with up to 300 nm long, 8 nm wide fibrils being the most prominent species in both cases. Other species were evident; 4-5 nm wide fibrils, 9-10 nm wide fibrils and oligomers of various sizes. STEM mass-per-length (MPL) measurements revealed discrete fibril types with masses of 9.5 and 14.0(+/-1.4) KDa/nm for TTR WT fibrils and 13.7, 18.5 and 23.2(+/-1.5) kDa/nm for TTR Leu55Pro fibrils. These MPL values are consistent with a model in which fibrillar TTR structures are composed of two, three, four or five elementary protofilaments, with each protofilament being a vertical stack of structurally modified TTR monomers assembled with the 2.9 nm axial monomer-monomer spacing indicated by X-ray fibre diffraction data. Ex vivo TTR amyloid fibrils were examined. From their morphological appearance compared to these, the in vitro assembled TTR WT and Leu55Pro fibrils examined may represent immature fibrillar species. The in vitro system operating at physiological pH for TTR Leu55Pro and the model presented for the molecular arrangement of TTR monomers within fibrils may, therefore, describe early fibril assembly events in vivo.  相似文献   

14.
Human amylin (hA1–37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17–29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17–29 β-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17–29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17–29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17–29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17–29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (?44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17–29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17–29 toxicities are especially attributable to oligomeric aggregates. hA17–29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.  相似文献   

15.
In a recent model of beta-amyloid (Abeta) fibrils, based mainly on solid-state NMR data, a molecular layer consists of two beta-sheets (residues 12-23 and 31-40 of Abeta1-40), folded onto one another by a connecting "bend" structure (residues 25-29) in the side-chain dimension. In this paper, we use two N-methyl amino acids to disrupt each of the two beta-sheets individually (2NMe(NTerm), residues 17 and 19; and 2NMe(CTerm), residues 37 and 39), or both of them at the same time (4NMe, with the above four N-methylated residues). Our data indicate that incorporation of two N-methyl amino acids into one beta-sheet is sufficient to disrupt that sheet while leaving the other, unmodified beta-sheet intact and able to form fibrils. We show, however, that disruption of each of the two beta-sheets has strikingly different effects on fibrillogenesis kinetics and fibril morphology. Both 2NMe(NTerm) and 2NMe(CTerm) form fibrils at similar rates, but more slowly than that of unmodified Abeta1-40. Electron microscopy shows that 2NMe(NTerm) forms straight fibrils with fuzzy amorphous material coating the edges, while 2NMe(CTerm) forms very regular, highly twisted fibrils-in both cases, distinct from the morphology of Abeta1-40 fibrils. Both 2NMe peptides show a "CMC" approximately four times greater than that of Abeta1-40. CD spectra of these peptides also evolve differently in time: whereas the CD spectra of 2NMe(NTerm) evolve little over 10 days, those of 2NMe(CTerm) show a transition to high beta-sheet content at about day 4-5. We also show that disruption of both beta-sheet domains, as in 4NMe, prevents fibril formation altogether, and renders Abeta1-40 highly water soluble and monomeric, and with solvent-exposed side chains. In summary, our data show (1) that the two beta-sheet domains fold in a semiautonomous manner, since disrupting each one still allows the other to fold; (2) that disruption of the N-terminal beta-sheet has a more profound effect on fibrillogenesis than disruption of the C-terminal beta-sheet, suggesting that the former is the more critical for the overall structure of the fibril; and (3) that disruption of both beta-sheet domains renders the peptide monomeric and unable to form fibrils.  相似文献   

16.
Although the gross morphology of amyloid fibrils is fairly well understood, very little is known about how the constituent polypeptides fold within the amyloid folding motif. In the experiments reported here, we used trypsin and chymotrypsin to conduct limited proteolysis studies on synthetic amyloid fibrils composed of the Alzheimer's disease peptide Abeta(1-40). In both reactions, the extreme N-terminal proteolytic fragment is released from fibrils as rapidly as it is from the Abeta monomer, while other proteolytic fragments are generated much more slowly. Furthermore, aggregated material isolated by centrifugation of intermediate digestion time points from both proteases contains, in addition to full-length material, peptides that possess mature C-termini but truncated N-termini. These data strongly suggest that the N-terminal region of Abeta is not involved in the beta-sheet network of the amyloid fibril, while the C-terminus is essentially completely engaged in protective-presumably beta-sheet-structure. In both digests, release of the extreme N-terminal fragments of Abeta(1-40) reaches plateau values corresponding to about 80% of the total available Abeta. This suggests that there are two classes of peptides in the fibril: while the majority of Abeta molecules have an exposed N-terminus, about 20% of the peptides have an N-terminus that is protected from proteolysis within the fibril structure. The most likely cause of this heterogeneity is the lateral association of protofilaments into the fibril structure, which would be expected to generate a unique environment for those Abeta N-termini located at protofilament packing interfaces and/or in the interior core region between the packed protofilaments. This suggests that the N-terminal region of Abeta, while not directly involved in the beta-sheet network of the fibril, may contribute to fibril stability by participating in protofilament packing.  相似文献   

17.
Merozoite surface protein 2 (MSP2) from the human malaria parasite Plasmodium falciparum is expressed as a GPI-anchored protein on the merozoite surface. MSP2 is assumed to have a role in erythrocyte invasion and is a leading vaccine candidate. Recombinant MSP2 forms amyloid-like fibrils upon storage, as do peptides corresponding to sequences in the conserved N-terminal region, which constitutes the structural core of fibrils formed by full-length MSP2. We have investigated the roles of individual residues in fibril formation and local ordered structure in two peptides, a recombinant 25-residue peptide corresponding to the entire N-terminal domain of mature MSP2 and an 8-residue peptide from the central region of this domain (residues 8–15). Both peptides formed fibrils that were similar to amyloid-like fibrils formed by full-length MSP2. Phe11 and Ile12 have important roles both in stabilising local structure in these peptides and promoting fibril formation; the F11A and I12A mutants of MSP28–15 were essentially unstructured in solution and fibril formation at pH 7.4 and 4.7 was markedly retarded. The T10A mutant showed intermediate behaviour, having a less well defined structure than wild-type and slower fibril formation at pH 7.4. The mutation of Phe11 and Ile12 in MSP21–25 significantly retarded but did not abolish fibril formation, indicating that these residues also play a key role in fibril formation by the entire N-terminal conserved region. These mutations had little effect on the aggregation of full-length MSP2, however, suggesting that regions outside the conserved N-terminus have unanticipated importance for fibril formation in the full-length protein.  相似文献   

18.
Shahi P  Sharma R  Sanger S  Kumar I  Jolly RS 《Biochemistry》2007,46(25):7365-7373
Mature amyloid fibrils are believed to be formed by the lateral association of discrete structural units designated as protofibrils, but this lateral association of protofibrils has never been directly observed. We have recently characterized a thioesterase from Alcaligenes faecalis, which was shown to exist as homomeric oligomers with an average diameter of 21.6 nm consisting of 22 kDa subunits in predominantly beta-sheet structure. In this study, we have shown that upon incubation in a 75% ethanol solution, the oligomeric particles of protein were transformed into amyloid-like fibrils. TEM pictures obtained at various stages during fibril growth helped us to understand to a certain extent the early events in the fibrillization process. When incubated in 75% ethanol, oligomeric particles of protein grew to approximately 35-40 nm in diameter before fusion. Fusion of two oligomers of 35-40 nm resulted in the formation of a fibril. Fibril formation was accompanied by a reduction in the diameter of the particle to approximately 20-25 nm along with concomitant elongation to approximately 110 nm, indicating reorganization and strengthening of the structure. The elongation process continued by sequential addition of oligomeric units to give fibers 500-1000 nm in length with a further reduction in diameter to 17-20 nm. Further elongation resulted in the formation of fibers that were more than 4000 nm in length; the diameter, however, remained constant at 17-20 nm. These data clearly show that the mature fibrils have assembled via longitudinal growth of oligomers and not via lateral association of protofibrils.  相似文献   

19.
Alpha-synuclein is the major component of Lewy bodies and Lewy neurites, which are granular and filamentous protein inclusions that are the defining pathological features of several neurodegenerative conditions such as Parkinson's disease. Fibrillar aggregates formed from alpha-synuclein in vitro resemble brain-derived material, but the role of such aggregates in the etiology of Parkinson's disease and their relation to the toxic molecular species remain unclear. In this study, we investigated the effects of pH and salt concentration on the in vitro assembly of human wild-type alpha-synuclein, particularly with regard to aggregation rate and aggregate morphology. Aggregates formed at pH 7.0 and pH 6.0 in the absence of NaCl and MgCl(2) were fibrillar; the pH 6.0 fibrils displayed a helical twist, as clearly evident by scanning force and electron microscopy. Incubations at pH 7.0 remained transparent during the process of aggregation and exhibited strong thioflavin-T and weak 8-anilino-1-naphthalenesulfonate (ANS) binding; furthermore, they were efficient in seeding fibrillization of fresh solutions. In contrast, incubating alpha-synuclein at low pH (pH 4.0 or pH 5.0) resulted in the rapid formation of turbid suspensions characterized by strong ANS binding, reduced thioflavin-T binding and reduced seeding efficiency. At pH 4.0, fibril formation was abrogated; instead, very large aggregates (dimensions approximately 100 microm) of amorphous appearance were visible by light microscopy. As with acidic conditions, addition of 0.2M NaCl or 10mM MgCl(2) to pH 7.0 incubations led to a shorter aggregation lag time and formation of large, amorphous aggregates. These results demonstrate that the morphology of alpha-synuclein aggregates is highly sensitive to solution conditions, implying that the fibrillar state does not necessarily represent the predominant or most functionally significant aggregated state under physiological conditions.  相似文献   

20.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号