首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M Balls 《Laboratory animals》1991,25(3):198-206
During the last 10 years, the 'Three Rs' (reduction, refinement and replacement) concept of alternatives has come to be widely accepted, and new national and international laws require that non-animal procedures should replace animal experimentation wherever possible. Some reduction and refinement of animal use in toxicity testing has been achieved, and non-animal methods are becoming widely used as prescreens. However, even replacing the LD50 test by a modified and validated animal test, the Fixed Dose Procedure, will be a major achievement. In this paper it is argued that this is not good enough, and that more effort must be put into the development, validation, acceptance and use of genuine replacement alternative tests.  相似文献   

2.
Training programs for research personnel are discussed as a key resource that must be part of an effective animal care and use program. Because of the legal responsibility to ensure that research staff are qualified to use animals, many institutions have justified the necessity for a training coordinator and/or trainers for their animal care and use programs. Effective training programs for research personnel must meet the needs of the client base (research scientists and staff) so that they are relevant, practical, and timely. To meet these objectives, it is useful to involve the scientific staff in the analysis of their learning needs. To meet a performance standard necessary for quality research, a large percentage of the institutional staff must participate in the training program. Often it is the principal investigators who set the tone for their staff members regarding the importance of receiving training. Garnering support from this client base will create a culture that encourages training and engenders a positive attitude about humane animal care and use. One effective approach is to incorporate nonanimal models as alternatives to live animals to teach humane handling techniques and methods, thereby contributing to refinement, reduction, and replacement (the 3Rs). Also discussed are the necessity of timely feedback from clients, documentation of personnel training for regulatory purposes, and the collection of training metrics, which assists in providing justification for the granting of additional fiscal support for the program. Finally, the compliance procedures and opportunities for essential refresher training are discussed and related to high performance standards, humane animal use, and quality research, all of which contribute to the 3Rs.  相似文献   

3.
When discussing animal use and considering alternatives to animals in biomedical research and testing, the number of animals required gets to the root of the matter on ethics and justification. In this paper, some reduction strategies are reviewed. Many articles and reports on reduction of animal use focus mostly on the experimental level, but other approaches are also possible. Reduction at the intraexperimental level probably offers the greatest scope for reduction, as the design and statistical analysis of individual experiments can often be improved. Supra-experimental reduction aims to reduce the number of animals by a change in the setting in which a series of experiments take place--for example, by improved education and training, reduction of breeding surpluses, critical analysis of test specifications, and re-use of animals. At the extra-experimental level, reduction is a spin-off of other developments, rather than the direct goal. Through improved research or production strategies, aimed at better quality, consistency and safety, reduction in the number of animals used can be substantial. A revised definition of reduction is proposed, which does not include the level of information needed, as in some cases reduction in the number of animals resulting in less information or data, is still acceptable.  相似文献   

4.
Scientists planning research that involves the use of animals are required by international and/or national law to examine the possibilities for the implementation of Replacement, Reduction and/or Refinement (the Three Rs principles of Russell and Burch) in experiments for research, testing, and education. There are two Korean laws legislating humane use of animals and ethical review prior to animal experiments. This report reviews current practice of the literature search by the researchers and protocol review by the Institutional Animal Care and Use Committees on the Replacement, Reduction and Refinement alternatives in Korea. The promotion and protection of the laboratory animals are one of the core competencies of investigators exploring the ethical conduct of research and good science. [BMB Reports 2013; 46(7): 335-337]  相似文献   

5.
6.
7.
The 'Three Rs' tenet (replacement, reduction, refinement) is a widely accepted cornerstone of Canadian and international policies on animal-based science. The Canadian Council on Animal Care (CCAC) initiated this web-based survey to obtain greater understanding of 'principal investigators' and 'other researchers' (i.e. graduate students, post-doctoral researchers etc.) views on the Three Rs, and to identify obstacles and opportunities for continued implementation of the Three Rs in Canada. Responses from 414 participants indicate that researchers currently do not view the goal of replacement as achievable. Researchers prefer to use enough animals to ensure quality data is obtained rather than using the minimum and potentially waste those animals if a problem occurs during the study. Many feel that they already reduce animal numbers as much as possible and have concerns that further reduction may compromise research. Most participants were ambivalent about re-use, but expressed concern that the practice could compromise experimental outcomes. In considering refinement, many researchers feel there are situations where animals should not receive pain relieving drugs because it may compromise scientific outcomes, although there was strong support for the Three Rs strategy of conducting animal welfare-related pilot studies, which were viewed as useful for both animal welfare and experimental design. Participants were not opposed to being offered "assistance" to implement the Three Rs, so long as the input is provided in a collegial manner, and from individuals who are perceived as experts. It may be useful for animal use policymakers to consider what steps are needed to make replacement a more feasible goal. In addition, initiatives that offer researchers greater practical and logistical support with Three Rs implementation may be useful. Encouragement and financial support for Three Rs initiatives may result in valuable contributions to Three Rs knowledge and improve welfare for animals used in science.  相似文献   

8.
Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.  相似文献   

9.
A personal view is presented on progress made during the last 25 years in applying the Three Rs (reduction, refinement, replacement) to animal testing in regulatory toxicology, with an emphasis on "good moments" (for example, international workshops on the principles and practical application of the validation process and on regulatory acceptance) and "not-so-good moments" (for example, the time taken to accept alternatives to the LD50 test and to accept in vitro tests for skin absorption as OECD Test Guidelines). The importance of dialogue and cooperation between international coordinating centres and scientific activities at the national level is stressed, as exemplified by the work of ECVAM during its first decade.  相似文献   

10.
The use of animals in biomedical and other research presents an ethical dilemma: we do not want to lose scientific benefits, nor do we want to cause laboratory animals to suffer. Scientists often refer to the potential human benefits of animal models to justify their use. However, even if this is accepted, it still needs to be argued that the same benefits could not have been achieved with a mitigated impact on animal welfare. Reducing the adverse effects of scientific protocols ('refinement') is therefore crucial in animal-based research. It is especially important that researchers share knowledge on how to avoid causing unnecessary suffering. We have previously demonstrated that even in studies in which animal use leads to spontaneous death, scientists often fail to report measures to minimize animal distress (Olsson et al. 2007). In this paper, we present the full results of a case study examining reports, published in peer-reviewed journals between 2003 and 2004, of experiments employing animal models to study the neurodegenerative disorder Huntington's disease. In 51 references, experiments in which animals were expected to develop motor deficits so severe that they would have difficulty eating and drinking normally were conducted, yet only three references were made to housing adaptation to facilitate food and water intake. Experiments including end-stages of the disease were reported in 14 papers, yet of these only six referred to the euthanasia of moribund animals. If the reference in scientific publications reflects the actual application of refinement, researchers do not follow the 3Rs (replacement, reduction, refinement) principle. While in some cases, it is clear that less-than-optimal techniques were used, we recognize that scientists may apply refinement without referring to it; however, if they do not include such information in publications, it suggests they find it less relevant. Journal publishing policy could play an important role: first, in ensuring that referees seriously consider whether submitted studies were indeed carried out with the smallest achievable negative impact on the animals and, secondly, in encouraging scientists to share refinements through the inclusion of a 3Rs section in papers publishing the results of animal-based research.  相似文献   

11.
In laboratory work which involves the large-scale routine assay of biologically-active substances the sponsors of “alternative” (in vitro) methods and the scientists have a common aim: a reduction in the use of living animals. In vitro methods are usually more accurate, easier to perform, and cheaper. Animals are no longer required for the production of certain antiviral vaccines.Those engaged in medical research where new knowledge is being sought also need no incentive to develop in vitro methods because they make refined analysis possible. Nevertheless, such in vitro methods are usually not alternatives in the sense that they substitute for animals; they complement experiments on animals. A legal requirement “that no experiment on a living animal may be performed if the purpose of the experiment can be achieved by alternative means not involving an experiment on a living animal” would be unenforceable.  相似文献   

12.
We have assessed each of the OECD Health Effects Test Guidelines (TGs) that were included in an annex to the Internet consultation issued by the European Commission relating to the Registration, Evaluation and Authorisation of Chemicals (REACH) legislation for the testing of new and existing chemical substances. Each guideline has been analysed with respect to its design and its scientific and animal welfare implications, the extent to which it makes use of modern techniques, and its suitability to be used in the REACH system for the testing of large numbers of chemicals. The scientific basis of the test and its justification are considered, as well as the numbers of animals required, and the potential adverse effects on them. The prospects and possibilities for applying the Three Rs (reduction, refinement and replacement) to each of the TGs are also discussed. We have proposed an overall testing strategy for how these TGs and other methods could best be deployed for chemicals testing, should it be necessary to fill data gaps. Certain TGs have been omitted from the strategy, when we have considered them to be unnecessary for chemicals testing. A series of recommendations has been made for improving the TGs with regard to both their scientific content and ways in which they could be better designed in relation to optimising the use of the animals concerned, and minimising adverse welfare consequences to them. Our investigations show that there is an urgent need to update the TGs to reflect modern techniques and methods, and to use current approaches for applying refinement strategies to improve the scientific and animal welfare aspects of the procedures used. Improvements can and should be made in all aspects of toxicity testing, from sample preparation, and animal housing, care and feeding, to dose formulation, test material administration, and the histopathological and clinical analysis of tissue samples. Opportunities for streamlining individual assays are very limited, but testing could be made more efficient by: a) only undertaking studies that provide relevant data; b) making greater use of screens and preliminary testing; c) applying some tests simultaneously to the same animals; d) using one sex; and e) eliminating redundant tests. In conclusion, it is clear that, as they stand, the OECD Health Effects TGs are unsuitable for use in the European Union REACH system, for which potentially very large numbers of laboratory animals will be needed for the testing of a very large number of chemicals.  相似文献   

13.
We have assessed each of the OECD Health Effects Test Guidelines (TGs) that were included in an annex to the Internet consultation issued by the European Commission relating to the Registration, Evaluation and Authorisation of Chemicals (REACH) legislation for the testing of new and existing chemical substances. Each guideline has been analysed with respect to its design and its scientific and animal welfare implications, the extent to which it makes use of modern techniques, and its suitability to be used in the REACH system for the testing of large numbers of chemicals. The scientific basis of the test and its justification are considered, as well as the numbers of animals required, and the potential adverse effects on them. The prospects and possibilities for applying the Three Rs (reduction, refinement and replacement) to each of the TGs are also discussed. We have proposed an overall testing strategy for how these TGs and other methods could best be deployed for chemicals testing, should it be necessary to fill data gaps. Certain TGs have been omitted from the strategy, when we have considered them to be unnecessary for chemicals testing. A series of recommendations has been made for improving the TGs with regard to both their scientific content and ways in which they could be better designed in relation to optimising the use of the animals concerned, and minimising adverse welfare consequences to them. Our investigations show that there is an urgent need to update the TGs to reflect modern techniques and methods, and to use current approaches for applying refinement strategies to improve the scientific and animal welfare aspects of the procedures used. Improvements can and should be made in all aspects of toxicity testing, from sample preparation, and animal housing, care and feeding, to dose formulation, test material administration, and the histopathological and clinical analysis of tissue samples. Opportunities for streamlining individual assays are very limited, but testing could be made more efficient by: a) only undertaking studies that provide relevant data; b) making greater use of screens and preliminary testing; c) applying some tests simultaneously to the same animals; d) using one sex; and e) eliminating redundant tests. In conclusion, it is clear that, as they stand, the OECD Health Effects TGs are unsuitable for use in the European Union REACH system, for which potentially very large numbers of laboratory animals will be needed for the testing of a very large number of chemicals.  相似文献   

14.

Background  

It has become widely accepted that whenever animals are used in scientific procedures, the 3Rs principle of replacement, reduction and refinement described by William Russell and Rex Burch should be adhered to. Animals should be replaced with non-sentient alternatives if possible, the number of animals used should be reduced and experimental procedures should be refined to minimise pain, suffering and distress. Administration of analgesic agents to animals undergoing surgical procedures is a refinement used to alleviate pain. In this study, a structured literature review was carried out to examine current trends in analgesic administration to rabbits undergoing experimental surgical procedures.  相似文献   

15.
Historically in the European Union, all Leptospira vaccines were released using the European Pharmacopoeia (Ph. Eur.) hamster potency assay. Recently, there has been a shift toward alternatives that offer either refinement of testing or replacement of animals for product release. This is being driven by animal welfare concerns but also by a drive to have more consistent, cheaper, and faster batch release tests. This publication discusses one such example of a multicomponent canine vaccine that includes three Leptospira serovars and has recently been registered in the European Union. The potency release test is a refinement because it uses rabbit serology rather than hamster challenge. This publication covers the principles of the test method, challenges faced during its development and registration, and discussion about benefits and limitations of this method. It concludes with a view of how the use of serology testing could fit into an overall strategy to move to fully in vitro testing by adopting a consistency approach.  相似文献   

16.
This report compares and considers the merits of existing, internationally available quality management systems suitable for implementation in experimental animal facilities. These are: the Good Laboratory Practice Guidelines, ISO 9000:2000 (International Organization for Standardization) and AAALAC International (Association for Assessment and Accreditation of Laboratory Animal Care International). Good laboratory practice (GLP) is a legal requirement for institutions undertaking non-clinical health and environmental studies for the purpose of registering or licensing for use and which have to be 'GLP-compliant'. GLP guidelines are often only relevant for and obtainable by those institutions. ISO is primarily an external business standard, which provides a management tool to master and optimize a business activity; it aims to implement and enhance 'customer satisfaction'. AAALAC is primarily a peer-reviewed system of accreditation which evaluates the organization and procedures in programmes of animal care and use to ensure the appropriate use of animals, safeguard animal well-being (ensuring state-of-the-art housing, management, procedural techniques, etc.) as well as the management of health and safety of staff. Management needs to determine, on the basis of a facility's specific goals, whether benefits would arise from the introduction of a quality system and, if so, which system is most appropriate. The successful introduction of a quality system confers peer-recognition against an independent standard, thereby providing assurance of standards of animal care and use, improving the quality of animal studies, and contributing to the three Rs-reduction, refinement and replacement.  相似文献   

17.
Animal experimentation continues to generate public and political concern worldwide. Relatively few countries collate and publish animal use statistics, yet this is a first and essential step toward public accountability and an informed debate, as well as being important for effective policy-making and regulation. The implementation of the Three Rs (replacement, reduction and refinement of animal experiments) should be expected to result in a decline in animal use, but without regular, accurate statistics, this cannot be monitored. Recent estimates of worldwide annual laboratory animal use are imprecise and unsubstantiated, ranging from 28-100 million. We collated data for 37 countries that publish national statistics, and standardised these against the definitions of 'animals', 'purposes' and 'experiments' used in European Union Directive 86/609/EEC. We developed and applied a statistical model, based on publication rates, for a further 142 countries. This yielded our most conservative estimate of global animal use: 58.3 million animals in 179 countries. However, this figure excludes several uses and forms of animals that are included in the statistics of some countries. With the data available, albeit for only a few countries, we also produced, by extrapolation, a more comprehensive global estimate that includes animals killed for the provision of tissues, animals used to maintain genetically-modified strains, and animals bred for laboratory use but killed as surplus to requirements. For a number of reasons that are explained, this more-comprehensive figure of 115.3 million animals is still likely to be an underestimate.  相似文献   

18.
Replacing animal procedures with methods such as cells and tissues in vitro, volunteer studies, physicochemical techniques and computer modelling, is driven by legislative, scientific and moral imperatives. Non-animal approaches are now considered as advanced methods that can overcome many of the limitations of animal experiments. In testing medicines and chemicals, in vitro assays have spared hundreds of thousands of animals. In contrast, academic animal use continues to rise and the concept of replacement seems less well accepted in university research. Even so, some animal procedures have been replaced in neurological, reproductive and dentistry research and progress is being made in fields such as respiratory illnesses, pain and sepsis. Systematic reviews of the transferability of animal data to the clinical setting may encourage a fresh look for novel non-animal methods and, as mainstream funding becomes available, more advances in replacement are expected.  相似文献   

19.
On 30 June 2011, the European Chemicals Agency published two reports, one on the functioning of the REACH system, the other on the use of alternatives to animal testing in compliance with that system. The data presented are based on information gained during the first registration period under the REACH system, which included high production volume chemicals and substances of very high concern, which have the most extensive information requirements. A total of 25,460 registration dossiers were received, covering 3,400 existing, so-called 'phase-in', substances, and 900 new, so-called 'non-phase-in', substances. Data sharing and the joint submission of data are reported to have worked successfully. In the registration dossiers for these substances, results from new animal tests were included for less than 1% of all the endpoints; testing proposals (required for 'higher-tier' information requirements) were submitted for 711 in vivo tests involving vertebrate animals. The registrants mainly used old, existing experimental data, or options for the adaptation (waiving) of information requirements, before collecting new information. For predicting substance toxicity, 'read-across' was the second most-used approach, followed by 'weight-of-evidence'. In vitro toxicity tests played a minor role, and were only used when the respective test methods had gained the status of regulatory acceptance. All in all, a successful start to the REACH programme was reported, particularly since, in contrast to most predictions, it did not contribute to a significant increase in toxicity testing in animals.  相似文献   

20.
BASF has developed a Metabolomics database (MetaMap(?) Tox) containing approximately 500 data rich chemicals, agrochemicals and drugs. This metabolome-database has been built based upon 28-day studies in rats (adapted to OECD 407 guideline) with blood sampling and metabolic profiling after 7, 14 and 28 days of test substance treatment. Numerous metabolome patterns have been established for different toxicological targets (liver, kidney, thyroid, testes, blood, nervous system and endocrine system) which are specific for different toxicological modes of action. With these patterns early detection of toxicological effects and the underlying mechanism can now be obtained from routine studies. Early recognition of toxicological mode of action will help to develop new compounds with a more favourable toxicological profile and will also help to reduce the number of animal studies necessary to do so. Thus this technology contributes to animal welfare by means of reduction through refinement (2R), but also has potential as a replacement method by analyzing samples from in vitro studies. With respect to the REACH legislation for which a large number of animal studies will need to be performed, one of the most promising methods to reduce the number of animal experiments is grouping of chemicals and read-across to those which are data rich. So far mostly chemical similarity or QSAR models are driving the selection process of chemical grouping. However, "omics" technologies such as metabolomics may help to optimize the chemical grouping process by providing biologically based criteria for toxicological equivalence. "From QSAR to QBAR" (quantitative biological activity relationship).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号