首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pathogenesis of cleft palate in TGF-beta3 knockout mice.   总被引:13,自引:0,他引:13  
We previously reported that mutation of the transforming growth factor-beta3 (TGF-beta3) gene caused cleft palate in homozygous null (-/-) mice. TGF-beta3 is normally expressed in the medial edge epithelial (MEE) cells of the palatal shelf. In the present study, we investigated the mechanisms by which TGF-beta3 deletions caused cleft palate in 129 x CF-1 mice. For organ culture, palatal shelves were dissected from embryonic day 13.5 (E13.5) mouse embryos. Palatal shelves were placed singly or in pairs on Millipore filters and cultured in DMEM/F12 medium. Shelves were placed in homologous (+/+ vs +/+, -/- vs -/-, +/- vs +/-) or heterologous (+/+ vs -/-, +/- vs -/-, +/+ vs +/-) paired combinations and examined by macroscopy and histology. Pairs of -/- and -/- shelves failed to fuse over 72 hours of culture whereas pairs of +/+ (wild-type) and +/+ or +/- (heterozygote) and +/-, as well as +/+ and -/- shelves, fused within the first 48 hour period. Histological examination of the fused +/+ and +/+ shelves showed complete disappearance of the midline epithelial seam whereas -/- and +/+ shelves still had some seam remnants. In order to investigate the ability of TGF-beta family members to rescue the fusion between -/- and -/- palatal shelves in vitro, either recombinant human (rh) TGF-beta1, porcine (p) TGF-beta2, rh TGF-beta3, rh activin, or p inhibin was added to the medium in different concentrations at specific times and for various periods during the culture. In untreated organ culture -/- palate pairs completely failed to fuse, treatment with TGF-beta3 induced complete palatal fusion, TGF-beta1 or TGF-beta2 near normal fusion, but activin and inhibin had no effect. We investigated ultrastructural features of the surface of the MEE cells using SEM to compare TGF-beta3-null embryos (E 12. 5-E 16.5) with +/+ and +/- embryos in vivo and in vitro. Up to E13.5 and after E15.5, structures resembling short rods were observed in both +/+ and -/- embryos. Just before fusion, at E14.5, a lot of filopodia-like structures appeared on the surface of the MEE cells in +/+ embryos, however, none were observed in -/- embryos, either in vivo or in vitro. With TEM these filopodia are coated with material resembling proteoglycan. Interestingly, addition of TGF-beta3 to the culture medium which caused fusion between the -/- palatal shelves also induced the appearance of these filopodia on their MEE surfaces. TGF-beta1 and TGF-beta2 also induced filopodia on the -/- MEE but to a lesser extent than TGF-beta3 and additionally induced lamellipodia on their cell surfaces. These results suggest that TGF-beta3 may regulate palatal fusion by inducing filopodia on the outer cell membrane of the palatal medial edge epithelia prior to shelf contact. Exogenous recombinant TGF-beta3 can rescue fusion in -/- palatal shelves by inducing such filopodia, illustrating that the effects of TGF-beta3 are transduced by cell surface receptors which raises interesting potential therapeutic strategies to prevent and treat embryonic cleft palate.  相似文献   

3.
It is unclear whether cleft palate formation is attributable to intrinsic biomolecular defects in the embryonic elevating palatal shelves or to an inability of the shelves to overcome a mechanical obstruction (such as the tongue in Pierre Robin sequence) to normal fusion. Regardless of the specific mechanism, presumably embryonic palatal shelves are ultimately unable to bridge a critical distance and remain unapproximated, resulting in a clefting defect at birth. We propose to use a palate organ culture system to determine the critical distance beyond which embryonic palatal shelves fail to fuse (i.e., the minimal critical intershelf distance). In doing so, we hope to establish an in vitro cleft palate model that could then be used to investigate the contributions of various signaling pathways to cleft formation and to study novel in utero treatment strategies.Palatal shelves from CD-1 mouse embryos were microdissected on day 13.5 of gestation (E13.5; term = 19.5 days), before fusion. Using a standardized microscope ocular grid, paired palatal shelves were placed on a filter insert at precisely graded distances ranging from 0 (in contact) to 1.9 mm (0, 0.095, 0.19, 0.26, 0.38, 0.48, 0.57, 0.76, 0.95, and 1.9 mm). A total of 68 paired palatal shelves were placed in serum-free organ culture for 96 hours (n = 68). Sample sizes of 10 were used for each intershelf distance up to and including 0.48 mm (n = 60). For intershelf distances of 0.57 mm and greater, two-paired palatal shelves were cultured (n = 8). All specimens were assessed grossly and histologically for palatal fusion.Palatal fusion occurred in our model only when intershelf distances were 0.38 mm or less. At 0.38 mm, eight of 10 palates appeared grossly adherent, whereas six of 10 demonstrated clear fusion histologically with resolution of the medial epithelial seam and continuity of the palatal mesenchyme. None of the 18 palates fused when placed at intershelf distances of 0.48 mm or greater.Using our selected intershelf distances as a guideline, we have established an approximate minimal critical intershelf distance (0.48 mm) at which we can reliably expect no palatal fusion. Culturing palatal shelves at intershelf distances of 0.48 mm or greater results in nonfusion or clefting in vitro. This model will allow us to study biomolecular characteristics of unfused or cleft palatal shelves in comparison with fused shelves. Furthermore, we plan to study the efficacy of grafting with exogenous embryonic mesenchyme or candidate factors to overcome clefting in vitro as a first step toward future in utero treatment strategies.  相似文献   

4.
We have identified a role for two evolutionarily related, secreted metalloproteases of the ADAMTS family, ADAMTS20 and ADAMTS9, in palatogenesis. Adamts20 mutations cause the mouse white-spotting mutant belted (bt), whereas Adamts9 is essential for survival beyond 7.5 days gestation (E7.5). Functional overlap of Adamts9 with Adamts20 was identified using Adamts9(+/-);bt/bt mice, which have a fully penetrant cleft palate. Palate closure was delayed, although eventually completed, in both Adamts9(+/-);bt/+ and bt/bt mice, demonstrating cooperation of these genes. Adamts20 is expressed in palatal mesenchyme, whereas Adamts9 is expressed exclusively in palate microvascular endothelium. Palatal shelves isolated from Adamts9(+/-);bt/bt mice fused in culture, suggesting an intact epithelial TGFβ3 signaling pathway. Cleft palate resulted from a temporally specific delay in palatal shelf elevation and growth towards the midline. Mesenchyme of Adamts9(+/-);bt/bt palatal shelves had reduced cell proliferation, a lower cell density and decreased processing of versican (VCAN), an extracellular matrix (ECM) proteoglycan and ADAMTS9/20 substrate, from E13.5 to E14.5. Vcan haploinsufficiency led to greater penetrance of cleft palate in bt mice, with a similar defect in palatal shelf extension as Adamts9(+/-);bt/bt mice. Cell density was normal in bt/bt;Vcan(hdf)(/+) mice, consistent with reduced total intact versican in ECM, but impaired proliferation persisted in palate mesenchyme, suggesting that ADAMTS-cleaved versican is required for cell proliferation. These findings support a model in which cooperative versican proteolysis by ADAMTS9 in vascular endothelium and by ADAMTS20 in palate mesenchyme drives palatal shelf sculpting and extension.  相似文献   

5.
B Myint 《Teratology》1984,30(3):333-340
The teratogenic potential of the lathyrogen, D-penicillamine (DP), was assessed in pregnant mice, especially with respect to its ability to produce cleft palate. The dosage and the duration of treatment as they relate to the induction of cleft palate were also studied. Two different doses of DP were administered orally for either 5 or 4 consecutive days during the critical period of palatal closure. D-penicillamine (DP) at a dose level which does not have any apparent maternal toxic effects produced cleft palate in the offspring, and this teratogenic effect depended more upon the duration of treatment than the dosage administered. Inhibitory effects on the formation of bone matrix were observed at the base of the palatal shelf. It is suggested that DP is potentially an osteolathyrogenic agent. The mechanism of induction of cleft palate in DP-treated mice was explored by histological studies using light microscopy. Delayed elevation of the palatal shelves was observed and is considered to be the cause of the induction of cleft palate. No other external malformations could be detected in DP-treated fetuses.  相似文献   

6.
Palate development after fetal tongue removal in cortisone-treated mice   总被引:1,自引:0,他引:1  
Morphological studies of cortisone-induced cleft palate have shown retardation in the rotation of palatine shelves from a sagittal to a transverse plane. Cortisone also reduces fetal muscular movements, which may explain why displacement of the tongue from between the palatine shelves is delayed. Previous work with extrauterine development of control fetuses demonstrated that fetal membranes and tongue were major obstacles to shelf rotation. Thus, removal of these obstacles might permit rotation and fusion of palatine shelves in cortisone-treated fetuses. In the present experiment, fetuses from cortisone-treated strain CD-1 mice were released from uterus and membranes and allowed to develop for eight hours in a fluid medium with the umbilical cord left intact. Compared to 4% fusion in utero, there was palatal fusion in 20% of fetuses released from membranes. When the fetal tongue was removed during extrauterine development, the frequency of fusions increased to 61%. Fusion appeared normal by the criteria applicable through light microscopy. Thus, cortisone induces cleft palate primarily through interference with shelf rotation. The palatine shelves of treated fetuses retain their ability to fuse when they can come in contact during the normal time for palate closure.  相似文献   

7.
A refined technique of amniotic sac puncturing at day 16.2 (i.e., 16 + 2/10 days) of gestation was employed in order to produce a series of total clefts and rare forms of partial clefts in Sprague-Dawley rat fetuses. From a total of 410 fetuses of a precise, individually determined age, 95 upper jaws were examined in the scanning electron microscope and, in part, in serial Epon sections. All fetal heads were examined macroscopically. Total clefts were found in 48.9% of a total of 184 viable rat fetuses examined at day 17.8 of smear age and in 21.8% of a total of 211 fetuses examined at day 19.3. Partial clefts were observed in 14.1% and 18.5% of fetuses at days 17.8 and 19.3 of smear age, respectively. At day 19.3, 16.1% of the viable fetuses showed a very inconspicuous, small abnormality (with residual clefting and incomplete fusion with the nasal septum) in the region of the palatine foraminae. Morphological observations suggested that under conditions of detained palatal closure (1) fusion of the soft palatal shelves commences independently from and prior to fusion of the hard palate, (2) delayed palatal shelf fusion proceeding in the anterior direction may occur with or without remaining sickle-shaped clefts in the anterior hard palate, and (3) in fetuses with small sickle-shaped clefts, fusion of the palatal shelves with the nasal septum does not occur. The present data imply that an almost total prenatal repair and delayed closure of the secondary palate may occur in rats that, at day 16.2 of multiple analysis age, most certainly had a total palatal cleft resulting from tongue resistance.  相似文献   

8.
T Kusanagi 《Teratology》1985,31(2):279-283
Palatal slit, which occurs spontaneously in C57BL/6 (C57BL) mice, is increased in frequency among C57BL fetuses from dams treated with triamcinolone acetonide, but is not induced in SWV fetuses. On the other hand, C57BL is more resistant than SWV to cleft palate induction by triamcinolone. Using these C57BL and SWV mice, the relation of palate stage and chronological age was examined from 1 P.M. on day 14 to 9 A.M. on day 16 in untreated embryos, and the condition of the palate after triamcinolone treatment on day 12 was examined at 9 A.M. on day 16. In untreated embryos, horizontalization and fusion of the palatal shelves occurred earlier in C57BL than in SWV embryos, but fusion of the primary palate with the secondary palate occurred later. After triamcinolone treatment, the development of the palate was delayed in both C57BL and SWV embryos. These results suggest that the times of normal palate closure are related to the differences between C57BL and SWV mice in their susceptibilities to palatal slit and cleft palate induction and that triamcinolone produces palatal slit and cleft palate by delaying palate closure.  相似文献   

9.
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.  相似文献   

10.
11.
In the present study, the morphological, histochemical, biochemical, and cellular aspects of the pathogenesis of bromodeoxyuridine (BrdU)-induced cleft palate in hamster fetuses were analyzed. Morphological observations indicated that BrdU interferes with the growth of the vertical shelves and thus induces cleft palate. At an ultrastructural level, BrdU-induced changes were first seen in the mesenchymal cells. Eighteen hours after drug administration, the initial alterations were characterized by swelling of the nuclear membrane and the appearance of lysosomes in the mesenchymal cells of the roof of the oronasal cavity. During the next 6 hr, as the palatal primordia developed, lysosomes were also seen in the overlying epithelial cells. The appearance of lysosomal activity, which was verified by acid phosphatase histochemistry, was temporally abnormal and was interpreted as a sublethal response to BrdU treatment. Later the cellular alterations subsided; 48 hr after BrdU treatment, they were absent in both the epithelial and mesenchymal cells of the vertically developing palatal shelves. Subsequently, unlike controls (in which the palatal shelves undergo reorientation and fusion), the BrdU-treated shelves remained vertical until term. Biochemical determination of DNA synthesis indicated that although there was an inhibition of DNA synthesis at the time of appearance of palatal primordia, a catch-up growth during the ensuing 12 hr may have restored the number of cells available for the formation of a vertical palatal shelf. It was suggested that BrdU affected cytodifferentiation in the palatal tissues during the critical phase of early vertical development to induce a cleft palate.  相似文献   

12.
Epidermal growth factor (EGF) injected into pregnant mice increased the frequency of cleft palate (CP) in cortisone-treated mouse fetuses. EGF alone produced proliferation and thickening of the epithelium of the palatal processes, but CP was not significantly increased over saline injected controls. Cortisone alone produced thinning of the palatal epithelium and caused CP in 61 percent of formed fetuses. The combination of EGF and cortisone treatment induced CP in 100 percent of formed fetuses; epithelial thickening still occurred with the combination treatment. Thus, EGF may be teratogenic under special circumstances. These observations suggest that the relative thickness of the palatal shelf epithelium may not be a critical factor in the fusion of the palatal shelves.  相似文献   

13.
The present study analyzes the morphological, histochemical, and ultrastructural aspects of the pathogenesis of 6-mercaptopurine (6MP)-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that 6MP stunts the growth of vertical palatal shelves and thus induces cleft palate. Ultrastructural analysis showed that, in contrast to controls, 6MP-induced alterations were first seen in the mesenchymal cells 24 hr after drug administration. The initial alterations were characterized by swelling of the nuclear membrane. During the next 12 hr, lysosomes were seen first in the mesenchymal cells and then in the cells of the medial edge epithelium (MEE) of the developing palatal primordia. The appearance of lysosomes was temporally abnormal and was interpreted as a sublethal response to 6MP treatment. Subsequently, the nuclear alterations and the lysosomes diminished; and 48 hr after 6MP administration, they were absent from the palatal tissues. Ninety hours after 6MP administration, unlike the controls (in which the palatal shelves were already fused), changes were seen at the epithelial-mesenchymal interface in the developing cleft palatal shelves. These changes were characterized by breakdown of the basal lamina and epithelial-mesenchymal contacts. Eventually, at term, the MEE of the vertical shelf stratified. It was suggested that 6MP affected cytodifferentiation in the palatal tissues during the critical phase of early vertical shelf development and thereby induced cleft palate.  相似文献   

14.
T Kusanagi 《Teratology》1983,28(1):149-152
A hitherto undescribed palatal defect, here named "palatal slit," was observed during a teratological study of C57BL/6 fetuses. The defect, involving a failure of fusion of the premaxilla and palatal shelves, corresponds to stage 7 in normal palate closure. Adult C57BL/6 mice have been observed with the defect, so it does not represent a developmental delay that is repaired postnatally. Genetic factors of an unknown nature seem to be involved in the occurrence of palatal slit, which does not appear to be related developmentally to cleft palate. Some preliminary information on the defect is reported here.  相似文献   

15.
T Kusanagi 《Teratology》1983,28(2):165-168
C57BL/6 (C57BL) and SWV mice were treated subcutaneously with triamcinolone acetonide in a single dose of 1.0-7.0 mg/kg on day 12 of pregnancy, and the palate of their fetuses was examined at term. In C57BL mice palatal slit occurred spontaneously and its frequency increased with increasing doses of triamcinolone. However, this defect was not seen in SWV fetuses, even when dams were treated with the doses that induced cleft palate. The frequency of cleft palate increased in both C57BL and SWV as the dose of triamcinolone increased. Fetal mortality increased in SWV, but not in C57BL, with increasing doses of triamcinolone. Dose-response relations were analyzed by the log-probit transformation method. In C57BL mice, the slope of the dose-response curve of palatal slit was significantly different from that of cleft palate. In contrast, the dose-response curves of cleft palate were similar in both C57BL and SWV; the median effective dose was significantly greater in C57BL than in SWV. The mechanism of induced palatal slit appears to be different from that of induced cleft palate; the mechanism of cleft palate induction may be the same in both C57BL and SWV. The slope of the dose-response curve of fetal mortality in SWV mice was different from that of cleft palate; the mechanisms underlying the resorption and cleft palate responses must be different.  相似文献   

16.
Maternal treatment with methylmercury (MeHg) has been shown to induce a high frequency of cleft palate and produce growth retardation in rat and mouse fetuses, but the relation between these effects is unknown. The objective of this study was to determine if mandibular growth retardation was a factor that contributed to induction of cleft palate in C57BL/6J mice. Two doses of MeHg (10 mg/kg maternal body weight) were given subcutaneously on days 10 and 11 of gestation, and the fetuses were morphometrically studied on days 14, 15, and 18. Full clefts of the secondary palate were present in approximately half of the treated day 15 and 18 fetuses; therefore, the cleft palate (CP) and noncleft palate (NCP) groups were analyzed separately to facilitate identification of morphologic changes associated with the clefting. The results showed that, compared with controls, the day 14 MeHg-treated fetuses had significantly smaller placental weights, but only half of the fetuses had delayed palatal shelf elevation, reduced body weight, and delayed morphological development. However on day 15, the CP and the NCP groups had similar reductions in body weight and placental weight. A striking downward and forward positioning of the head was present in the MeHg-treated fetuses with the CP group more severely affected than the NCP group. Significant differences between the three groups (control, NCP, and CP) were present with mean head-to-body angles of 67 degrees, 60 degrees and 51 degrees, respectively. The absence of normal head lifting resulted in a relative mandibular retrognathia that when combined with a decrease in mandibular length produced alterations in spatial relations that were most severe in the CP fetuses. The results suggest that after exposure to MeHg, palatal closure is affected by altered tongue posture associated with the abnormal head positioning and shortening of the mandible that develop following placental and embryonic growth retardation.  相似文献   

17.
18.
Temporal and Spatial Expression of Hoxa-2 During Murine Palatogenesis   总被引:2,自引:0,他引:2  
1. Mice homozygous for a targeted mutation of the Hoxa-2 gene are born with a bilateral cleft of the secondary palate associated with multiple head and cranial anomalies and these animals die within 24 hr of birth (Gendron-Maguire et al., 1993; Rijli et al., 1993; Mallo and Gridley, 1996). We have determined the spatial and temporal expression of the Hoxa-2 homeobox protein in the developing mouse palate at embryonic stages E12, E13, E13.5, E14, E14.5, and E15.2. Hoxa-2 is expressed in the mesenchyme and epithelial cells of the palate at E12, but is progressively restricted to the tips of the growing palatal shelves at E13.3. By the E13.5 stage of development, Hoxa-2 protein was found to be expressed throughout the palatal shelf. These observations correlate with palatal shelf orientation and Hoxa-2 protein may play a direct or indirect role in guiding the palatal shelves vertically along side the tongue, starting with the tips of the palatal shelves at E13, followed by the entire palatal shelf at E13.5.4. As development progresses to E14, the stage at which shelf elevation occurs, Hoxa-2 protein is downregulated in the palatal mesenchyme but remains in the medial edge epithelium. Expression of Hoxa-2 continues in the medial edge epithelium until the fusion of opposing palatal shelves.5. By the E15 stage of development, Hoxa-2 is downregulated in the palate and expression is localized in the nasal and oral epithelia.6. In an animal model of phenytoin-induced cleft palate, we report that Hoxa-2 mRNA and protein expression were significantly decreased, implicating a possible functional role of the Hoxa-2 gene in the development of phenytoin-induced cleft palate.7. A recent report by Barrow and Capecchi (1999), has illustrated the importance of tongue posture during palatal shelf closure in Hoxa-2 mutant mice. This along with our new findings of the expression of the Hoxa-2 protein during palatogenesis has shed some light on the putative role of this gene in palate development.  相似文献   

19.
20.
Palatal histogenesis in hydrocortisone-treated hamster fetuses was studied by both light and electron microscopy. At an early stage in the hydrocortisone-affected fetuses, when the palatal shelves hung vertically on either side of the tongue, necortic changes could be seen in some of the basal epithelial cells which lay adjacent to the fragmented basal lamina. The normal looking cells lay on an intact basal lamina and were attached to the contiguous necrotic cells by desmosomes. With horizontal reorientation of the palatal shelves and their approach to the midline, cellular necrosis and fragmentation of the basal lamina increased. When compared with normal cells, the hydrocortisone-affected ones were seen to be lighter, to contain fewer ribosomes and no lysosomes. At a later stage, when midline palatal fusion was lacking, the epithelium underwent stratification and keratinization while the necrotic debris was removed by mesenchymal macrophages. It appears that the normal process of protein synthesis is inhibited following hydrocortisone administration and that this, in turn, during palatogenesis, disrupts normal cellular differentiation and the integrity of the basal lamina, which are associated with the production of a cleft palate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号