首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the potential role of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) in the regulation of actin polymerization and GLUT4 translocation, the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) were expressed in 3T3L1 adipocytes. In preadipocytes (fibroblasts) PIP5K expression promoted actin polymerization on membrane-bound vesicles to form motile actin comets. In contrast, expression of PIP5K in differentiated 3T3L1 adipocytes resulted in the formation of enlarged vacuole-like structures coated with F-actin, cortactin, dynamin, and N-WASP. Treatment with either latrunculin B (an inhibitor for actin polymerization) or Clostridium difficile toxin B (a general Rho family inhibitor) resulted in a relatively slower disappearance of coated F-actin from these vacuoles, but the vacuoles themselves remained unaffected. Functionally, the increased PI(4,5)P2 levels resulted in an inhibition of transferrin receptor and GLUT4 endocytosis and a slow accumulation of these proteins in the PI(4,5)P2-enriched vacuoles along with the non-clathrin-derived endosome marker (caveolin) and the AP-2 adaptor complex. However, these structures were devoid of early endosome markers (EEA1, clathrin) and the biosynthetic membrane secretory machinery markers p115 (Golgi) and syntaxin 6 (trans-Golgi Network). Taken together, these data demonstrate that PI(4,5)P2 has distinct morphologic and functional properties depending upon specific cell context. In adipocytes, altered PI(4,5)P2 metabolism has marked effects on GLUT4 endocytosis and intracellular vesicle trafficking due to the derangement of actin dynamics.  相似文献   

2.
The proto-oncogene c-Src is involved in a variety of signaling processes. Therefore, c-Src spatiotemporal localization is critical for interaction with downstream targets. However, the mechanisms regulating this localization have remained elusive. Previous studies have shown that c-Src trafficking is a microtubule-dependent process that facilitates c-Src turnover in neuronal growth cones. As such, microtubule depolymerization lead to the inhibition of c-Src recycling. Alternatively, c-Src trafficking was also shown to be regulated by RhoB-dependent actin polymerization. Our results show that c-Src vesicles primarily exhibit microtubule-dependent trafficking; however, microtubule depolymerization does not inhibit vesicle movement. Instead, vesicular movement becomes both faster and less directional. This movement was associated with actin polymerization directly at c-Src vesicle membranes. Interestingly, it has been shown previously that c-Src delivery is an actin polymerization-dependent process that relies on small GTPase RhoB at c-Src vesicles. In agreement with this finding, microtubule depolymerization induced significant activation of RhoB, together with actin comet tail formation. These effects occurred downstream of GTP-exchange factor, GEF-H1, which was released from depolymerizing MTs. Accordingly, GEF-H1 activity was necessary for actin comet tail formation at the Src vesicles. Our results indicate that regulation of c-Src trafficking requires both microtubules and actin polymerization, and that GEF-H1 coordinates c-Src trafficking, acting as a molecular switch between these two mechanisms.  相似文献   

3.
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays an important role during actin polymerization and is produced by the type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KI), which are activated by phosphatidic acid (PA). As diacylglycerol kinases (DGKs) generate PA by phosphorylating diacylglycerol (DAG), we investigated whether DGKs were involved in controlling PIP2 levels by regulating PIP5KI activity. Here we show that expression of DGKzeta significantly enhances PIP5KIalpha activity in thrombin-stimulated HEK293 cells, and DGK activity is required for this stimulation. We also observed that DGKzeta co-immunoprecipitated and co-localized with PIP5KIalpha, suggesting that they reside in a regulated signaling complex. To explore the role of DGKzeta in actin polymerization, we examined the subcellular distribution of DGKzeta, PIP5KIalpha and actin, and found that these proteins co-localized with actin in lamellipodial protrusions. Supporting that PIP5KIalpha regulation occurs at the sites of actin polymerization, we found that PIP2 also accumulated in the actin-rich regions of lamellipodia. Significantly, in wounding assays, DGKzeta, PIP5KIalpha and PIP2 accumulated at the leading edge of migrating A172 cells, where massive actin polymerization is known to occur. Combined, these data support a novel function for DGKzeta: by generating PA, it stimulates PIP5KIalpha activity to increase local PIP2, which regulates actin polymerization.  相似文献   

4.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

5.
Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to accomplish the recruitment and trafficking of the trans-membrane proteins toward the leading edge. Different signaling molecules regulate cell migration in different physio-pathological contexts, among them, phosphatidylinositol-4,5-biphosphate (PIP2) is an integral component of the plasma membrane and pleiotropic lipid signaling molecule modulating diverse biological processes, including actin cytoskeletal dynamics and vesicle trafficking required for cell migration. In this commentary, we provide a brief overview of our current understandings on the phosphoinositide signaling and its implication in regulation of cell polarity and vesicle trafficking in migrating cells. In addition, we highlight the coordinated role of PIPKIγi2, a focal adhesion-targeted enzyme that synthesizes PIP2, and the exocyst complex, a PIP2-effector, in the trafficking of E-cadherin in epithelial cells and integrins in migrating cancer cells.  相似文献   

6.
Henmi Y  Tanabe K  Takei K 《PloS one》2011,6(12):e28603
A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.  相似文献   

7.
Phosphotidylinositols (PIs) are known to play an essential role in membrane trafficking and signaling transduction. PIs serve multiple functions, such as recruitment of cytosolic proteins with PI phosphate (PIP) binding domains and modification of the physical properties of the membranes in which they reside. As substrates for phosphoinositide-specific lipases they function as a switch point in phosphoinositide metabolism. Recent work with epidermal growth factor receptor (EGFR) and colony stimulating factor-1 receptor (CSFR) has identified a possible connection between endocytosis of activated receptors and type-1 phosphatidylinositol-4-phosphate-5-kinase. Furthermore, serine/tyrosine phosphorylation of phosphatidylinositol-4-phosphate-5-kinase seems to be essential for its activities. Indeed, one of the products of the phosphatidylinositol-4-phosphate-5-kinases, PIP2, has been shown to be involved in multiple steps of endocytosis, including the assembly of the clathrin coat, regulation of adaptor proteins, and production of endocytic vesicles via the regulation of dynamin. The discussion in this review focuses primarily on receptors with intrinsic enzymatic activity, specifically on receptor tyrosine kinases (RTKs). We will discuss their structure; mechanism of action and potential role in membrane trafficking and/or signaling through the regulation of phosphatidylinositol phosphate kinases.  相似文献   

8.
Wiskott-Aldrich syndrome protein (WASP)/Scar family proteins promote actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. While Scar/WAVE proteins are thought to be involved in lamellipodia protrusion, the hematopoietic WASP has been implicated in various actin-based processes such as chemotaxis, podosome formation, and phagocytosis. Here we show that the ubiquitously expressed N-WASP is essential for actin assembly at the surface of endomembranes induced as a consequence of increased phosphatidylinositol 4,5-biphosphate (PIP2) levels. This process resulting in the motility of intracellular vesicles at the tips of actin comets involved the recruitment of the Src homology 3 (SH3)-SH2 adaptor proteins Nck and Grb2 as well as of WASP interacting protein (WIP). Reconstitution of vesicle movement in N-WASP-defective cells by expression of various N-WASP mutant proteins revealed three independent domains capable of interaction with the vesicle surface, of which both the WH1 and the polyproline domains contributed significantly to N-WASP recruitment and/or activation. In contrast, the direct interaction of N-WASP with the Rho-GTPase Cdc42 was not required for reconstitution of vesicle motility. Our data reveal a distinct cellular phenotype for N-WASP loss of function, which adds to accumulating evidence that the proposed link between actin and membrane dynamics may, at least partially, be reflected by the actin-based movement of vesicles through the cytoplasm.  相似文献   

9.
We examined the spatial and temporal control of actin assembly in living Xenopus eggs. Within minutes of egg activation, dynamic actin-rich comet tails appeared on a subset of cytoplasmic vesicles that were enriched in protein kinase C (PKC), causing the vesicles to move through the cytoplasm. Actin comet tail formation in vivo was stimulated by the PKC activator phorbol myristate acetate (PMA), and this process could be reconstituted in a cell-free system. We used this system to define the characteristics that distinguish vesicles associated with actin comet tails from other vesicles in the extract. We found that the protein, N-WASP, was recruited to the surface of every vesicle associated with an actin comet tail, suggesting that vesicle movement results from actin assembly nucleated by the Arp2/3 complex, the immediate downstream target of N-WASP. The motile vesicles accumulated the dye acridine orange, a marker for endosomes and lysosomes. Furthermore, vesicles associated with actin comet tails had the morphological features of multivesicular endosomes as revealed by electron microscopy. Endosomes and lysosomes from mammalian cells preferentially nucleated actin assembly and moved in the Xenopus egg extract system. These results define endosomes and lysosomes as recruitment sites for the actin nucleation machinery and demonstrate that actin assembly contributes to organelle movement. Conversely, by nucleating actin assembly, intracellular membranes may contribute to the dynamic organization of the actin cytoskeleton.  相似文献   

10.
Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.  相似文献   

11.
Assembly of clathrin-coated pits and their maturation into coated vesicles requires coordinated interactions between specific lipids and several structural and regulatory proteins. In the presence of primary alcohols, phospholipase D generates phosphatidylalcohols instead of PA, reducing stimulation of phosphatidyl inositol 5-kinase (PI5K) and hence decreasing formation of phosphoinositide-4,5-biphosphate (PIP(2)). Using live-cell imaging, we have shown that acute treatment of cells with 1-butanol or other small primary alcohols induces rapid disassembly of coated pits at the plasma membrane and blocks appearance of new ones. Addition of exogenous PIP(2) reverses this effect. Coated pits and vesicles reappear synchronously upon removal of 1-butanol; we have used this synchrony to assess the role of actin in coated vesicle assembly. Prolonged inhibition of actin polymerization by latrunculin A or cytochalasin D reduced by approximately 50% the frequency of coated pit formation without affecting maturation into coated vesicles. As in control cells, removal of 1-butanol in the continued presence of an actin depolymerizer led to synchronous appearance of new pits, which matured normally. Thus, remodeling of the actin cytoskeleton is not essential for clathrin-coated vesicle assembly but may indirectly affect the nucleation of clathrin-coated pits.  相似文献   

12.
The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails—dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, formin-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.  相似文献   

13.
Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P2 and PI(4,5)P2-synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P2. PIP5-kinase Iα bound PI(4,5)P2, and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P2. Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P2.  相似文献   

14.
To acquire fertilization competence, spermatozoa should undergo several biochemical changes in the female reproductive tract, known as capacitation. The capacitated spermatozoon can interact with the egg zona pellucida resulting in the occurrence of the acrosome reaction, a process that allowed its penetration into the egg and fertilization. Sperm capacitation requires actin polymerization, whereas F-actin must disperse prior to the acrosome reaction. Here, we suggest that the actin-severing protein, gelsolin, is inactive during capacitation and is activated prior to the acrosome reaction. The release of bound gelsolin from phosphatidylinositol 4,5-bisphosphate (PIP(2)) by PBP10, a peptide containing the PIP(2)-binding domain of gelsolin, or by activation of phospholipase C, which hydrolyzes PIP(2), caused rapid Ca(2+)-dependent F-actin depolymerization as well as enhanced acrosome reaction. Using immunoprecipitation assays, we showed that the tyrosine kinase SRC and gelsolin coimmunoprecipitate, and activating SRC by adding 8-bromo-cAMP (8-Br-cAMP) enhanced the amount of gelsolin in this precipitate. Moreover, 8-Br-cAMP enhanced tyrosine phosphorylation of gelsolin and its binding to PIP(2(4,5)), both of which inactivated gelsolin, allowing actin polymerization during capacitation. This actin polymerization was blocked by inhibiting the Src family kinases, suggesting that gelsolin is activated under these conditions. These results are further supported by our finding that PBP10 was unable to cause complete F-actin breakdown in the presence of 8-Br-cAMP or vanadate. In conclusion, inactivation of gelsolin during capacitation occurs by its binding to PIP(2) and tyrosine phosphorylation by SRC. The release of gelsolin from PIP(2) together with its dephosphorylation enables gelsolin activation, resulting in the acrosome reaction.  相似文献   

15.
Actin ring formation is a prerequisite for osteoclast bone resorption. Although gelsolin null osteoclasts failed to exhibit podosomes, actin ring was observed in these osteoclasts. Wiscott-Aldrich syndrome protein (WASP) was observed in the actin ring of gelsolin null osteoclast. Osteoclasts stimulated with osteopontin simulated the effects of Rho and Cdc42 in phosphatidylinositol 4,5-bisphosphate (PIP2) association with WASP as well as formation of podosomes, peripheral microfilopodia-like structures, and actin ring. To explore the potential functions of Rho and Cdc42, TAT-mediated delivery of Rho proteins into osteoclasts was performed. Although Rho and Cdc42 are required for actin ring formation, transduction of either one of the proteins alone is insufficient for this process. Addition of osteopontin to osteoclasts transduced with Cdc42Val12 or transduction of osteoclasts with both RhoVal14 and Cdc42Val12 augments the formation of WASP-Arp2/3 complex and actin ring. Neomycin, an antibiotic, blocked the effects of osteopontin or TAT-RhoVal14 on PIP2 interaction with WASP. WASP distribution was found to be cytosolic in these osteoclasts. Depletion of WASP by short interfering RNA-mediated gene silencing blocked actin polymerization as well as actin ring formation in osteoclasts. These results suggest that Rho-mediated PIP2 interaction with WASP may contribute to the activation and membrane targeting of WASP. Subsequent interaction of Cdc42 and Arp2/3 with WASP may enhance cortical actin polymerization in the process of actin ring formation in osteoclasts.  相似文献   

16.
The phosphatidylinositol pathway is implicated in the regulation of numerous cellular functions and responses to extracellular signals. An important branching point in the pathway is the phosphorylation of phosphatidylinositol 4-phosphate by the phosphatidylinositol 4-phosphate 5-kinase (PIP5K) to generate the second messenger phosphatidylinositol 4,5-bis-phosphate (PIP2). PIP5K and PIP2 have been implicated in signal transduction, cytoskeletal regulation, DNA synthesis, and vesicular trafficking. We have cloned and generated mutations in a Drosophila PIP5K type I (skittles). Our analysis indicates that skittles is required for cell viability, germline development, and the proper structural development of sensory bristles. Surprisingly, we found no evidence for PIP5KI involvement in neural secretion.  相似文献   

17.
Caroni P 《The EMBO journal》2001,20(16):4332-4336
The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.  相似文献   

18.
The effect of phosphoinositide depletion on focal adhesion kinase (FAK) signaling was investigated in two neuronal cell lines. Treatment of either SH-SY5Y neuroblastoma cells or PC12 cells with wortmannin, at a concentration that inhibits phosphatidylinositol 4-kinase activity, led to a selective depletion of phosphatidylinositol 4-phosphate without significantly altering phosphatidylinositol 4,5-bisphosphate (PIP2) content. An enhanced tyrosine phosphorylation of FAK elicited by agonist occupancy of phospholipase C-coupled receptors (muscarinic cholinergic in SH-SY5Y neuroblastoma or bradykinin in PC12 cells) was blocked completely by wortmannin. Under the above conditions, phosphoinositide resynthesis was prevented, and as a consequence, receptor stimulation led to a marked depletion of PIP2. In contrast, the increased tyrosine phosphorylation of FAK elicited by agents that do not activate phospholipase C (phenylarsine oxide, lysophosphatidic acid, or phorbol ester) persisted in the presence of wortmannin. However, the ability of these agents to elicit an increase in FAK phosphorylation was also prevented if PIP2 was depleted by activation of a phospholipase C-coupled receptor in the presence of wortmannin. The results suggest that agonist-sensitive pools of PIP2 must be maintained for FAK signaling to occur in response to a mechanistically diverse range of stimuli.  相似文献   

19.
Myosin VI is a minus-end directed actin-based molecular motor implicated in uncoated endocytic vesicle transport. Recent kinetic studies have shown that myosin VI displays altered ADP release kinetics under different load conditions allowing myosin VI to serve alternately as a transporter or as an actin tether. We theorized that one potential regulatory event to modulate between these kinetic choices is phosphorylation at a conserved site, threonine 406 (T406) in the myosin VI motor domain. Alterations mimicking the phosphorylated (T406E) and dephosphorylated state (T406A) were introduced into a GFP-myosin VI fusion (GFP-M6). Live cell imaging revealed that GFP-M6(T406E) expression changed the path myosin VI took in its transport of uncoated endocytic vesicles. Rather than routing vesicles inwards as seen in GFP-M6 and GFP-M6(T406A) expressing cells, GFP-M6(T406E) moved vesicles into clusters at distinct peripheral sites. GFP-M6(T406E) expression also increased the density of the actin cytoskeleton. Filaments were enriched at the vesicle cluster sites. This was not due to a gross redistribution of the actin polymerization machinery. Instead the filament density correlated to the fixed positioning of GFP-M6(T406E)-associated vesicles on F-actin, leading to inhibition of actin depolymerization. Our study suggests that phosphorylation at T406 changes the nature of myosin VI's interaction with actin in vivo.  相似文献   

20.
Rho proteins: linking signaling with membrane trafficking   总被引:9,自引:1,他引:8  
Rho proteins are well known for their effects on the actin cytoskeleton, and are activated in response to a variety of extracellular stimuli. Several Rho family members are localized to vesicular compartments, and increasing evidence suggests that they play important roles in the trafficking of vesicles on both endocytic and exocytic pathways. In particular, RhoA, RhoB, RhoD, Rac and Cdc42 have been shown to affect various steps of membrane trafficking. The underlying molecular basis for these effects of Rho proteins are incompletely understood, but in the case of Cdc42 it appears that it can drive vesicle movement through Arp2/3 complex-mediated actin polymerization at the surface of the vesicle. This is similar to what is believed to happen when Rac and Cdc42 stimulate actin polymerization at the plasma membrane. Rho proteins may also affect membrane trafficking by altering phosphatidylinositide composition of membrane compartments, or through interactions with microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号