首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT:?

Molecular mimicry and molecular symbiosis are proposed to be the main factors controlling thermodynamic activity and phase behavior of macromolecular compounds in foods, beverages, and chyme. Molecular mimicry implies a chemical resemblance of hydrophilic surfaces of globular proteins with their chemical information hidden in the hydrophobic interior and low excluded volume of the globules. The molecular mimicry contributes to the efficiency of enzymes. Molecular symbiosis means that interactions attraction or repulsion) between biopolymer molecules greatly differing in conformation (globular and rod-like) favor the biological efficiency of one of them at least. The symbiosis is based on excluded volume effects of macromolecules in mixed solutions. Association-dissociation of rod-like macromolecules can dictate thermodynamic activity of an enzyme in the mixed solution. Thermodynamic incompatibility is typical of food macromolecules, whose denaturation, association, complexing, and chemical modification reduce their mimicry and co-solubility. Foods are normally phase-separated systems with highly volume-occupied phases. The phase-separated nature of the gel-like chyme is important to the efficiency of digestion of mixed diets. Phase separation of biopolymer mixtures, presumably, underlies mechanisms of nonspecific immune defense. The phase behavior-functionality relationships is presented through concrete examples of some foods (such as milk products, low-fat spreads, ice cream, wheat and rye doughs, thermoplastic extrudates, etc.), beverages (tea and coffee), and chyme.  相似文献   

2.
Tolstoguzov V 《FEBS letters》1999,444(2-3):145-148
Thermodynamic incompatibility of polymers in a common solvent is possibly a driving force for formation and evolution of globular protein structures. Folding of polypeptide chains leads to a decrease in both excluded volume of molecules and chemical differences between surfaces of globular molecules with chemical information hidden in the hydrophobic interior. Folding of polypeptide chains results in 'molecular or thermodynamic mimicry' of globular proteins and in at least more than 10-fold higher phase separation threshold values of mixed protein solutions compared to those of classical polymers. Unusually high co-solubility might be necessary for efficient biological functioning of proteins, e.g. enzymes, enzyme inhibitors, etc.  相似文献   

3.
Allen P. Minton 《Biopolymers》1981,20(10):2093-2120
The effect of excluded volume on the thermodynamic activity of globular macromolecules and macromolecular complexes in solution is studied in the hard-particle approximation. Activity coefficients are calculated as a function of the fraction of total volume occupied by macromolecules using relations obtained from scaled particle and lattice models. Significant and readily observable effects are predicted to occur as the fraction of volume occupied by globular macromolecules increases, including the following: (i) Compact quasi-spherical macromolecular conformations become increasingly energetically favored over extended anisometric conformations. (ii) Self- and heteroassociation processes are enhanced, particularly those leading to the formation of compact quasi-spherical aggregates. (iii) Depending upon the details of the reaction mechanism, the rate of an enzyme-catalyzed reaction may monotonically decrease, go through a maximum, or exhibit more complex behavior. A given degree of volume occupancy by larger macromolecules is predicted to have less effect on the structure and self-association of smaller macromolecules than the same degree of volume occupancy by smaller macromolecules has on the structure and self-association of larger macromolecules.  相似文献   

4.
Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes influence protein size, shape, and interprotein interaction strength.  相似文献   

5.
In this paper we show that interfaces in aqueous phase-separated biopolymer mixtures are permeable for all components present in the system. In spinning drop experiments, droplets of the low-density phase decreased up to 90% in volume over a time span of days to weeks, when inserted in a matrix of the high-density phase. We propose an expression for this change of volume in time in terms of diffusion coefficients of the components. From the magnitude of these coefficients, we conclude that the transfer of gelatin from inside the droplet to the outer phase was the rate-determining step in this process. Since the interfaces are permeable to all components, the properties of the system change in time. Therefore, the spinning drop technique is not an accurate method for the measurement of the equilibrium interfacial tension of these aqueous phase-separated systems.  相似文献   

6.
Aqueous suspensions of mixtures of the rodlike virus tobacco mosaic virus (TMV) with globular macromolecules such as polyethylene oxide (PEO) or bovine serum albumin (BSA) phase separate and exhibit rich and strikingly similar phase behavior. Isotropic, nematic, lamellar, and crystalline phases are observed as a function of the concentration of the constituents and ionic strength. The observed phase behavior is considered to arise from attractions between the two particles induced by the presence of BSA or PEO. For the TMV/BSA mixtures, the BSA adsorbs to the TMV and bridging of the BSA between TMV produces the attractions. For TMV/PEO mixtures, attractions are entropically driven via excluded volume effects known alternatively as the "depletion interaction" or "macromolecular crowding."  相似文献   

7.
We have developed a technique to produce compositional maps of phase-separated protein/polysaccharide mixed gels using Fourier transform infrared (FTIR) microspectroscopy. The maps plot out the composition of either the protein, the polysaccharide or the water as a function of position in the sample and are presented in the form of two-dimensional contour plots. Our technique is completely general in nature, since it simply relies on there being some measurable spectral difference between the two biopolymers. However, in this paper we use our technique to study the particular case of aqueous gelatin/ amylopectin gels.

Semi-quantitative compositional maps were generated in the first instance by simply plotting the area of the infrared amide II absorption band from the gelatin. Fully quantitative compositional maps, in terms of actual weight percentage concentration of gelatin, amylopectin and water, were also produced by analysing a particular region of the spectra with the method of partial least-squares (PLS).

We recently showed how PLS analysis can be used in conjunction with FTIR spectroscopy to plot the phase diagram of bulk phase-separated solutions which are held above the gel temperature of both components. Thus, our mapping technique allows the concentrations in a gel to be directly compared with those reached at equilibrium in the bulk phase-separated solution, using the same molecular probe, namely, infrared radiation.  相似文献   


8.
The very high concentration of macromolecules within cells can potentially have an overwhelming effect on the thermodynamic activity of cellular components because of excluded volume effects. To estimate the magnitudes of such effects, we have made an experimental study of the cytoplasm of Escherichia coli. Parameters from cells and cell extracts are used to calculate approximate activity coefficients for cytoplasmic conditions. These calculations require a representation of the sizes, concentrations and effective specific volumes of the macromolecules in the extracts. Macromolecule size representations are obtained either by applying a two-phase distribution assay to define a related homogeneous solution or by using the molecular mass distribution of macromolecules from gel filtration. Macromolecule concentrations in cytoplasm are obtained from analyses of extracts by applying a correction for the dilution that occurs during extraction. That factor is determined from experiments based upon the known impermeability of the cytoplasmic volume to sucrose in intact E. coli. Macromolecule concentrations in the cytoplasm of E. coli in either exponential or stationary growth phase are estimated to be approximately 0.3 to 0.4 g/ml. Macromolecule specific volumes are inferred from the composition of close-packed precipitates induced by polyethylene glycol. Several well-characterized proteins which bind to DNA (lac repressor, RNA polymerase) are extremely sensitive to changes in salt concentration in studies in vitro, but are insensitive in studies in vivo. Application of the activity coefficients from the present work indicates that at least part of this discrepancy arises from the difference in excluded volumes in these studies. Applications of the activity coefficients to solubility or to association reactions are also discussed, as are changes associated with cell growth phase and osmotic or other effects. The use of solutions of purified macromolecules that emulate the crowding conditions inferred for cytoplasm is discussed.  相似文献   

9.
S B Zimmerman  S O Trach 《Biopolymers》1990,30(7-8):703-718
Partition parameters of several proteins and other macromolecules are measured in an aqueous two-phase liquid system containing polyethylene glycol and phosphate buffer. Distribution of macromolecules is a function of the relative volume excluded to the macromolecules in the two phases. A simple model with no adjustable parameters yields covolumes of the macromolecules with the polyethylene glycol. Covolumes are used to estimate effective molecular volumes and the magnitudes of excluded volume effects. The same approach is applied to mixtures of macromolecules.  相似文献   

10.
11.
Liquid-liquid phase separation (LLPS) is an important mechanism that mediates the formation of biomolecular condensates. Despite the immense interest in LLPS, phase-separated proteins verified by experiments are still limited, and identification of phase-separated proteins at proteome-scale is a challenging task. Multivalent interaction among macromolecules is the driving force of LLPS, which suggests that phase-separated proteins may harbor distinct biological characteristics in protein–protein interactions (PPIs). In this study, we constructed an integrated human PPI network (HPIN) and mapped phase-separated proteins into it. Analysis of the network parameters revealed differences of network topology between phase-separated proteins and others. The results further suggested the efficiency when applying topological similarities in distinguishing components of MLOs. Furthermore, we found that affinity purification mass spectrometry (AP-MS) detects PPIs more effectively than yeast-two hybrid system (Y2H) in phase separation-driven condensates. Our work provides the first global view of the distinct network topology of phase-separated proteins in human interactome, suggesting incorporation of PPI network for LLPS prediction in further studies.  相似文献   

12.
Macromolecular diffusion in crowded solutions.   总被引:6,自引:1,他引:5       下载免费PDF全文
J Han  J Herzfeld 《Biophysical journal》1993,65(3):1155-1161
The effects of crowding on the self or tracer diffusion of macromolecules in concentrated solutions is an important but difficult problem, for which, so far, there has been no rigorous treatment. Muramatsu and Minton suggested a simple model to calculate the diffusion coefficient of a hard sphere among other hard spheres. In this treatment, scaled particle theory is used to evaluate the probability that the target volume for a step in a random walk is free of any macromolecules. We have improved this approach by using a more appropriate target volume which also allows the calculation to be extended to the diffusion of a hard sphere among hard spherocylinders. We conclude that, to the extent that proteins can be approximated as hard particles, the hindrance of globular proteins by other proteins is reduced when the background proteins aggregate (the more so the greater the decrease in particle surface area), the hindrance due to rod-shaped background particles is reduced slightly if the rod-like particles are aligned, and the anisotropy of the diffusion of soluble proteins among cytoskeletal proteins will normally be small.  相似文献   

13.
The article presents an overview of the latest advances in investigations of the biosynthesis, molecular properties, and associated biological activity of pullulan. The literature survey on the pullulan biosynthesis is intended to illustrate how the great variety of environmental conditions as well as variability in strain characteristics influences the metabolic pathways of the pullulan formation and effects structural composition of the biopolymer. Molecular properties of pullulan as alpha-(1-->4)- and alpha-(1-->6)-glucan are discussed in terms of similarities with amylose and dextran structures, and an emphasis is made on the inherent biological activity of pullulan molecules. The author also attempts to summarize the concepts, options, and strategies in chemical modification of the biopolymer and to delineate future prospects in designing new biologically active derivatives.  相似文献   

14.
15.
William P. Bryan 《Biopolymers》1986,25(10):1967-1979
Sorption isotherms of water vapor by solid biopolymers are necessary for the determination of thermodynamic quantities for water–biopolymer interactions. Such isotherms are generally irreversible, so equilibrium thermodynamics may not be applicable. General relationships are derived for thermodynamic quantities of sorption when the sorbent is a single uniform phase. In general, use of the Clausius–Clapeyron equation allows correct determination of differential entropies of sorption. However, calorimetric data are also necessary for the correct determination of other thermodynamic quantities. The single uniform phase model appears more useful than a domain model in explaining the hysteresis seen in water–biopolymer sorption isotherms.  相似文献   

16.
The spontaneous nature of biopolymer phase separation in cells entails that the resulting condensates can be thermodynamic machines, which, in the process of condensing, can take on distinct forms themselves and deform neighboring cellular structures. We introduce here general notions of material and mechanical properties of protein condensates with an emphasis on how molecular arrangements and intermolecular interaction within condensates determine their ability to do work on their surroundings. We further propose functional implications of these concepts to cellular and subcellular morphology and biogenesis.  相似文献   

17.
18.
The concentration of skimmed milk proteins by polysaccharides such as gum arabic, arabinogalactan and apple pectin with a high content of methoxyl groups was studied. Investigation of the thermodynamic compatibility of skimmed milk proteins with these polysaccharides at different NaCl concentrations and pH has shown that above a certain polysaccharide concentration termed the ‘threshold of complete incompatibility’ the protein is almost completely excluded from the polysaccharide phase. Phase diagrams obtained for the systems: water-skimmed milk proteins-arabinogalactan, water-skimmed milk proteins-gum arabic and water-skimmed milk proteins-pectin, indicate that highly esterified apple pectin is superior to the other polysaccharides for concentrating skimmed milk proteins.The proposed method of concentration which may be called ‘membraneless isobaric osmosis' has a higher productivity and lower energy consumption than other methods of biopolymer concentration.  相似文献   

19.
Leng X  Starchev K  Buffle J 《Biopolymers》2001,59(4):290-299
Diffusion dynamics of a polysaccharide, schizophyllan has been studied by fluorescence correlation spectroscopy (FCS). Several different sizes of nondenatured and denatured schizophyllan have been labeled with rhodamine 6G in borate buffer. The length of the nondenatured schizophyllan was calculated from FCS data by using the Broersma's relationship for rod-like macromolecules. The obtained length was close to that obtained by atomic force microscopy (AFM) measurements. Denatured schizophyllan possesses a random coil conformation. Its hydrodynamic radius R(h) was measured by FCS. The relationship between R(h) and the molecular mass M has been studied and the scaling relationship R(h)--M(0.59) has been obtained, which is in agreement with the random coil model with excluded volume effect. The persistence length q(denat) of the denatured schizophyllan was determined by Hearst's relationship, to be equal to 5.16 +/- 0.75 (nm). The work demonstrates the utility of FCS method for dynamics investigations of biopolymers especially in diluted regime (concentration lower than 10(-8)M could be measured) where other techniques could not be used.  相似文献   

20.
The glycocalyx is a thick coat of proteins and carbohydrates on the outer surface of all eukaryotic cells. Overproduction of large, flexible or rod-like biopolymers, including hyaluronic acid and mucins, in the glycocalyx strongly correlates with the aggression of many cancer types. However, theoretical frameworks to predict the effects of these changes on cancer cell adhesion and other biophysical processes remain limited. Here, we propose a detailed modeling framework for the glycocalyx incorporating important physical effects of biopolymer flexibility, excluded volume, counterion mobility, and coupled membrane deformations. Because mucin and hyaluronic biopolymers are proposed to extend and rigidify depending on the extent of their decoration with side chains, we propose and consider two limiting cases for the structural elements of the glycocalyx: stiff beams and flexible chains. Simulations predict the mechanical response of the glycocalyx to compressive loads, which are imposed on cells residing in the highly confined spaces of the solid tumor or invaded tissues. Notably, the shape of the mechanical response transitions from hyperbolic to sigmoidal for more rod-like glycocalyx elements. These mechanical responses, along with the corresponding equilibrium protein organizations and membrane topographies, are summarized to aid in hypothesis generation and the evaluation of future experimental measurements. Overall, the modeling framework developed provides a theoretical basis for understanding the physical biology of the glycocalyx in human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号