首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NMR titration curves of proton chemical shifts were observed for the C2 protons of histidine residues in intact bovine pancreatic RNAase A (EC 3.1.27.5) and carboxyalkylated RNAase A. By comparing the methyl region of NMR spectra, the 250-340 nm region of circular dichoic spectra, and the NMR titration curves of tyrosine ring protons among intact and modified RNAase A, it was ascertained that the carboxyalkylation of histidine residues at position 12 or 119 did not make any appreciable conformational changes to RNAase A. With the pK values determined for intact and modified RNAase A, the microscopic pK values and molar ratios of tautomers were estimated for His-12 and His-119 by means of the procedure described in the preceding paper. The estimated microscopic pK values of tautomers were 6.2 for the N1-H tautomer of His-12, more than 8 for the N3-H tautomer of His-12, 7.0 for the N1-H tautomer of His-119, and 6.4 for the N3-H tautomer of His-119, respectively. These values were interpreted in terms of the microscopic environments surrounding the histidine residues. The microscopic structure estimated in the present study was discussed, comparing it with those from X-ray crystallography and hydrogen-tritium (or hydrogen-deuterium) exchange technique.  相似文献   

2.
The pH-dependent 13C chemical shifts for histamine indicate an approximate 4: 1 preference for the N-H tautomer of the imidazole ring, similar to that previously deduced for L-histidine. It is concluded that the 13C chemical shift method is a complimentary technique to the method of determining tautomer preference from pK values. Factors determining the tautomer preference in histamine and L-histidine are discussed.  相似文献   

3.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

4.
Tautomers and conformers (T/C's) involving the C4 and C5 atoms of the thiazole or imidazole rings were characterized in amthamine (2-amino-5-(2'-aminoethyl)-4-methylthiazole) and histamine (4(5)-2'-aminoethylimidazole), respectively. Critical points of the potential energy surfaces were calculated at the RHF/6-31G** level, using analytical gradients. Conformers were also determined at the MP2/6-31G**//6-31G** and MP2/6-31G**//MP2/6-31G** levels. In amthamine, a gauche conformer of C(5)-H tautomer, I+, turns out to be the second most stable T/C in the gas phase in the RHF approach. MP2 calculations generally yield larger potential energy. Topology of the charge density shows internal electrostatic interactions between S1 ... N for some of the gauche conformers (I+ and L+). Transition state structures for conformational changes and internal proton transfer reactions have also been characterized. In histamine, the C(4)-H tautomers are more stable than the C(5) -H ones, and they have a much higher potential energy than the most stable tautomers of amthamine. N(1) C(i)-H tautomers present similar electronic features to those of amthamine. Internal hydrogen bonds (HyB) and the ring formed in the gauche structures with internal HyB's have been characterized by using the charge density topology procedures. MP2 results are approximately similar to the RHF results, especially with respect to the conformational angles, the potential energy being larger than that from the RHF wavefunction. MP2 distances of HyB's reveal stronger HyB's than the RHF ones.  相似文献   

5.
220 MHz proton NMR was applied to the acid-base transition of ferric myoglobin and its imidazole complex. In horse and sperm whale ferric myoglobins: (1) pH-dependent shift of heme-ring methyl signals above p2H 10 was analyzed on the basis of rapid exchange between alkaline and acidic forms by the use of pK value 9.1 of acid-base transition in 1H20 solution; (2) limiting shifts of three methyl signals were reasonably determined for purely alkaline form. For the imidazole complex: (3) a drastic high field shift of each signal was observed above p2H 9.0, whereas N0methyl imidazole complex did not exhibit such a shift, which suggests the 2H+ dissociation from liganded imidazole greater than N2H. It is concluded thns.  相似文献   

6.
Raman spectra were measured for poly(L -histidine) in H2O, poly(L -histidine-d2 and -d3) in D2O, L -histidine in H2O, L -histidine-d3 (and d4) in D2O, and 4-methylimidazole in H2O with various pH (or pD) values. The Raman scattering peaks observed for these samples were ascribed to the neutral and positively charged imidazole groups on the basis of the spectral changes due to the pH variation and to the deuterium substitution of the imino protons. The vibrational modes of these peaks were deduced from the normal coordinate analysis made on the positively charged and neutral 4-ethylimidazoles. The Raman scattering peaks from the imidazole groups in the neutral form clearly indicate that these imidazole groups exist in the equilibrium between the two tautomeric forms, the 1-N protonated from (tautomer I) and the 3-N protonated one (tautomer II). For example, the breathing vibration of the 1-N protonated form is observed at 1282 cm?1 for L -histidine and at 1304 cm?1 for 4-methylimidazole, while the breathing vibration of the 3-N protonated form is observed at 1260 cm?1 for L -histidine and 4-methylimidazole. From the temperature dependence of the relative intensities of the tautomer I peak to that of the tautomer II, it was concluded that the tautomer I is energetically more stable than the tautomer II, and the ΔH value is 1.0 ± 0.3 kcal/mol for L -histidine and 0.4 ± 0.1 kcal/mol for 4-methylimidazole. Poly(L -histidine) with the neutral imidazole side chains shows the amide I peak at 1672 cm?1, indicating that the sample assumes the antiparallel pleated-sheet structure. Poly(L -Ala75L -His25) and poly(L -Ala50L -His50) were found to take the α-helical and β-form conformations, respectively.  相似文献   

7.
A comparative Raman and FTIR study of histamine (Hm), a small hormone present in a wide selection of living organisms, and its complexes with copper(II) at different pH values was carried out. Both the Raman and IR spectra present some marker bands useful for the identification of the structure of the species predominating in the Cu(II) aqueous and alcoholic systems. In particular, Raman spectroscopy appears to be a useful tool for analyzing the tautomeric equilibrium of the imidazole ring of Hm, because some bands (i.e., nuC(4)dbond;C(5)) appear at different wavenumbers, depending on whether the imidazole moiety is in the N(tau)-H (tautomer I) or N(pi)-H (tautomer II) protonated form. In aqueous solutions the manner in which Hm binds to Cu(II) depends on the pH. At basic pH the most relevant species formed are a dimer, [Cu(2)L(2)H(-2)](2+), and a monomeric complex, [CuL](2-) or [CuL(2)](+). On the contrary, by decreasing the pH, Hm acts as a mono- or bidentate ligand, giving rise to two types of monomeric complexes, [CuLH](2-) and [CuL](2-) or [CuL(2)](+). With respect to the Cu(II)-Hm alcoholic system, both the aminic group and the imidazole ring (tautomer I) take part in the Cu(II) coordination, leading to the formation of the [CuL](2-) or [CuL(2)](+) monomeric complex.  相似文献   

8.
The pKa values for the proton dissociation of carboxyl, imidazolium, and ammonium groups for histidine and ten of its derivatives were determined electrometrically at seven temperatures in the range 10–40°C. The ΔH and ΔS values were estimated from the temperature dependence of the dissociation constants of histidine and its derivatives. These results and the pKa values compared in terms of inductive effect suggest an ion-dipole interaction between the protonated amino group and the unprotonated imidazole ring. The charge and the solvation effects of the neighboring groups are the main factors that determine the imidazole group pKa in histidine and its studied derivatives. The Nτ-H tautomer is favored over the Nπ-H by 1.6 kcal/mol, indicating that the inductive substituent effect at position 4 of the imidazole ring is the major component in determining this tautomeric preference.  相似文献   

9.
An Escherichia coli sensor kinase, ArcB, transfers a phosphoryl group to a partner response regulator in response to anaerobic conditions. Multidimensional NMR techniques were applied to determine the solution structure of the histidine-containing phosphotransfer signaling domain of ArcB (HPt(ArcB)), which has a phosphorylation site, His717. The backbone dynamics were also investigated by analyses of the (15)N relaxation data and amide hydrogen exchange rates. Furthermore, the protonation states of the histidine imidazole rings were characterized by means of (1)H and (15)N chemical shifts at various pHs. The determined solution structure of HPt(ArcB) contains five helices and forms a four-helix bundle motif like other HPt domains. The obtained order parameters, S (2), [(1)H]-(15)N heteronuclear NOE values, and chemical exchange parameters, R(ex), showed that the alpha-helical regions of HPt(ArcB) are rigid on both picosecond to nanosecond and microsecond to millisecond time scales. On the other hand, helix D, which contains His717, exhibited low protection factors of less than 4000, indicating the presence of fluctuations on a slower time scale in helix D. These results suggest that HPt(ArcB) may undergo a small conformational change in helix D upon phosphorylation. It was also shown that the imidazole ring of His717 has a pK(a) value of 6.76, which is similar to that of a solvent-exposed histidine imidazole ring, and that a pair of deprotonated neutral tautomers are rapidly exchanged with each other. This is consistent with the solution structure of HPt(ArcB), in which the imidazole ring of His717 is exposed to the solvent.  相似文献   

10.
The C[bond]N coupling constants centered at the C(epsilon 1) and C(delta 2) carbons in histidine residues depend on the protonation state and tautomeric form of the imidazole ring, making them excellent indicators of pH or pK(a), and the ratio of the tautomeric states. In this paper, we demonstrate that the intensity ratios for the C(epsilon 1)-H and C(delta 2)-H cross-peaks measured with a constant time HSQC experiment without and with J(C[bond]N) amplitude modulation are determined by the ratios of the protonated and deprotonated forms and tautomeric states. This allows one to investigate the tautomeric state of histidines as well as their pK(a) in situations where changing the pH value by titration is difficult, for example, for in-cell NMR experiments. We apply this technique to the investigation of the bacterial protein NmerA and determine that the intracellular pH in the Escherichia coli cytoplasm is 7.1 +/- 0.1.  相似文献   

11.
The pH-dependence of selected 13C chemical shifts reflects the state of ionization of the imidazole ring in both imidazole and L-histidine. Titration of the amino and carboxyl groups of histidine also perturbs the shifts. The coupling constants 1J (13C(2),H) and 1J (13C(5),H) for both compounds also vary with pH, but in L-histidine these constants are relatively insensitive to the titration of groups outside the imidazole ring.  相似文献   

12.
Extracellular fungal RNases, including ribotoxins such as alpha-sarcin, constitute a family of structurally related proteins represented by RNase T1. The tautomeric preferences of the alpha-sarcin imidazole side chains have been determined by nuclear magnetic resonance and electrostatic calculations. Histidine residues at the active site, H50 and H137, adopt the Ndelta tautomer, which is less common in short peptides, as has been found for RNase T1. Comparison with tautomers predicted from crystal structures of other ribonucleases suggests that two active site histidine residues with the Ndelta tautomer are a conserved feature of microbial ribonucleases and that this is related to their ribonucleolytic function.  相似文献   

13.
Substitution of 5-nitro- -histidine for -histidine is proposed as a useful tool to study the relationships among tautomerism, acid-base properties, and biological activity of peptide hormones. This approach is illustrated by an analog of the tripeptide thyroliberin, [5-nitro- -histidine]2-thyroliberin, which has been prepared by solid-phase peptide synthesis. The acid-base properties of the hormone analog and the position of the imidazole ring tautomeric equilibrium have been investigated by spectroscopic methods. Correlation of these properties with the biological activity of the nitrated tripeptide strongly supports the idea that imidazole ring tautomerism is a key factor for hormonal activity and that the Nτ-H tautomer must be considered the biologically active form of thyroliberin.  相似文献   

14.
Couch V  Stuchebrukhov A 《Proteins》2011,79(12):3410-3419
A modification to the standard continuum electrostatics approach to calculate protein pK(a)s, which allows for the decoupling of histidine tautomers within a two-state model, is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two-state formalism, because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine's charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation.  相似文献   

15.
IIIGlc is an 18.1-kDa signal-transducing phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system from Escherichia coli. The 1H, 15N, and 13C histidine ring NMR signals of both the phosphorylated and unphosphorylated forms of IIIGlc have been assigned using two-dimensional 1H-15N and 1H-13C heteronuclear multiple-quantum coherence (HMQC) experiments and a two-dimensional 13C-13C-1H correlation spectroscopy via JCC coupling experiment. The data were acquired on uniformly 15N-labeled and uniformly 15N/13C-labeled protein samples. The experiments rely on one-bond and two-bond J couplings that allowed for assignment of the signals without the need for the analysis of through-space (nuclear Overhauser effect spectroscopy) correlations. The 15N and 13C chemical shifts were used to determine that His-75 exists predominantly in the N epsilon 2-H tautomeric state in both the phosphorylated and unphosphorylated forms of IIIGlc, and that His-90 exists primarily in the N delta 1-H state in the unphosphorylated protein. Upon phosphorylation of the N epsilon 2 nitrogen of His-90, the N delta 1 nitrogen remains protonated, resulting in the formation of a charged phospho-His-90 moiety. The 1H, 15N, and 13C signals of the phosphorylated and unphosphorylated proteins showed only minor shifts in the pH range from 6.0 to 9.0. These data indicate that the pK alpha values for both His-75 and His-90 in IIIGlc and His-75 in phospho-IIIGlc are less than 5.0, and that the pK alpha value for phospho-His-90 is greater than 10. The results are presented in relation to previously obtained structural data on IIIGlc, and implications for proposed mechanisms of phosphoryl transfer are discussed.  相似文献   

16.
Baykal AT  Kakalis L  Jordan F 《Biochemistry》2006,45(24):7522-7528
Appropriate compounds were synthesized to create models for the 1',4'-imino tautomer of the 4'-aminopyrimidine ring of thiamin diphosphate recently found to exist on the pathway of enzymatic reactions requiring this cofactor [Jordan, F., and Nemeria, N. S. (2005) Bioorg. Chem. 33, 190-215]. The N1-methyl-4-aminopyrimidinium compounds synthesized on treatment with a strong base produce the 1,4-imino tautomer whose UV spectrum indicates a maximum between 300 and 320 nm, depending on the absence or presence of a methyl group at the 4-amino nitrogen. The lambda(max) found is in the same wavelength range as the positive circular dichroism band observed on several enzymes and showed a very strong dependence on solvent dielectric constant. To help with the 15N chemical shift assignments, the model compounds were specifically labeled with 15N at the amino nitrogen atom. The chemical shift of the amino nitrogen was deshielded by N1-methylation and then dramatically further deshielded by more than 100 ppm on formation of the 1,4-iminopyrimidine tautomer. Both the UV spectroscopic values and the 15N chemical shift for the 1,4-iminopyrimidine tautomer should serve as useful guides to the assignment of enzyme-bound signals.  相似文献   

17.
The interaction of N-acetyl-chitotriose ((GlcNAc)3) with human lysozyme [EC 3.2.1.17] was studied at various pH values by measuring changes in the circular dichroic (CD) band at 294 or 255 nm and the data were compared with the results for hen and turkey lysozymes reported previously (Kuramitsu et al. (1974) J. Biochem.76, 671-683; Kuramitsu et al. (1975) J. Biochem. 77, 291-301). The pH dependence of the binding constant of (GlcNAc)3 to human lysozyme was different from those for hen and turkey lysozymes. The catalytic carboxyls of human lysozyme, Asp 52 and Glu 35, were not perturbed on binding of (GlcNAc)3. This is consistent with the previous findings that the macroscopic pK values of Asp 52 and Glu 35 of human lysozyme are 3.4 and 6.8 at 0.1 ionic strength and 25 degrees and were unchanged on complexing with (GlcNAc)3. An ionizable group with pK 4.5, which participates in the binding of (GlcNAc)3 to hen lysozyme and was assigned as Asp 101, did not participate in the binding of the saccharide to human lysozyme. Between pH 9 and 11, the binding constants of (GlcNAc)3 to hen lysozyme remained unchanged, whereas perturbation of an ionizable group with pK 10.5 to 10.0 was observed for human lysozyme. This group may be Tyr 62 in the active-site cleft. The binding constants of (GlcNAc)3 to human lysozyme molecules having different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated using the binding constants obtained in the present experiments and the microscopic ionization constants of the catalytic carboxyls obtained previously. All four species of human lysozyme had similar binding constants to (GlcNAc)3. This result is different from those for hen and turkey lysozymes.  相似文献   

18.
The nucleoside analogue dP (6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one) displays ambivalent hydrogen bonding characteristics whereby the imino tautomer of P can base-pair with adenine and its amino tautomer can base-pair with guanine. Fixed imino and amino tautomers of 6-methyl-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-2-one (N-methyl P) have been synthesised and their structures obtained by X-ray crystallography. The tautomeric constant of N-methyl P has been calculated from pK(a) values of the fixed tautomers and the kinetic parameters for the incorporation of its 5'-triphosphate (dPTP) by exonuclease-free Klenow fragment of DNA polymerase I have been determined. A strong correlation between the tautomeric constant and the incorporation specificity of dPTP is found. These results lend support to the proposal that the minor tautomeric forms of the natural bases may play an important role in substitution mutagenesis during DNA replication. Furthermore, they imply that DNA polymerases impose specific steric requirements on the base-pair during nucleotide incorporation.  相似文献   

19.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

20.
Detailed literature inspections regarding the diterpenoids icetexone ( 1 ) and conacytone ( 3 ) reveal that the absolute configuration (AC) of these natural occurring compounds is not rigorously proven, despite they were originally isolated in 1976. This task is now completed by single‐crystal X‐ray diffraction Flack and Hooft parameters determination after processing data collected with Cu graphite monochromated radiation. The AC of both compounds is further determined by vibrational circular dichroism measurements performed on icetexone acetate ( 2 ) and conacytone triacetate ( 4 ) since the solubility of 1 and 3 is limited. Comparison of the substituent chemical shifts (SCS) induced by acetylation of 1 and 3 to afford 2 and 4 , respectively, reveals that in the case of icetexone, all six SCS values of the quinone ring are in excellent agreement with the expected values, while in the case of conacytone, three agree and three do not agree due to the presence of additional acetates near the quinone ring. Density functional theory calculations performed on 3‐hydroxythymoquinone ( 6 ) and its tautomer 4‐hydroxy‐1,2‐quinone 7 , on 6‐hydroxythymoquinone ( 8 ) and its tautomer ortho‐quinone 9 , and on icetexone ( 1 ) and the claimed natural occurring ortho‐quinone tautomer romulogarzone ( 5 ) indicate that 2‐hydroxy‐1,4‐quinones are more stable, by some 11‐14 kcal/mol, than their 4‐hydroxy‐1,2‐quinone tautomers, and therefore, romulogarzone ( 5 ) is inexistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号