首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】对细菌Solitalea canadensis中编码β-N-乙酰氨基己糖苷酶的基因进行克隆,通过原核表达获得重组β-N-乙酰氨基己糖苷酶,并研究其酶学性质。【方法】以Solitalea canadensis基因组DNA为模板,使用加尾PCR的方法克隆编码β-N-乙酰氨基己糖苷酶的基因,构建含有组氨酸标签的重组表达载体,并将重组质粒导入大肠杆菌BL21(DE3)中进行原核表达。重组蛋白经Ni-NTA纯化,以对硝基苯酚-β-乙酰氨基葡萄糖(pNP-β-Glc NAc)为底物研究其酶学性质,包括最适温度、最适p H以及金属离子和抑制剂的影响。【结果】从菌株Solitalea canadensis克隆得到了β-N-乙酰氨基己糖苷酶基因片段(Gene Bank:WP_014682183.1),全长2586 bp,重组表达所得蛋白表观分子量约为97 k Da,最适pH 6.0,最适温度42°C,但不稳定,半衰期小于5 min。该酶对十二烷基磺酸钠(SDS)敏感,活性受Triton X-100和尿素的抑制。此外二糖分子也能不同程度地抑制该重组酶的活性,特异性抑制剂PugNAc(O-(2-Acetamido-2-deoxy-D-glucopyranosylideneamino)N-phenylcarbamate)对该酶的IC_(50)为2μmol/L。该重组酶蛋白除能水解对硝基苯酚-β-乙酰氨基葡萄糖苷和对硝基苯酚-β-乙酰氨基半乳糖(pNP-β-GalNAc)外,还能对O-链聚糖核心结构Core Ⅱ末端的乙酰氨基葡萄糖进行水解。【结论】本文首次从Solitalea canadensis中克隆得到能水解末端β1-6连接的乙酰氨基葡萄糖而不能水解β1-4连接键的β-N-乙酰氨基己糖苷酶,并对其进行了酶学性质研究和底物特异性分析,为开发高效特异性强的糖链分析工具酶提供理论基础。  相似文献   

2.
番茄叶片胞外β-N-乙酰氨基己糖苷酶的部分性质研究   总被引:1,自引:0,他引:1  
用从系统感染TMV(tobacco m osaic virus)的番茄叶胞外蛋白提取液中纯化的β-N-乙酰氨基己糖苷酶为材料,研究了该酶的部分性质。以p-硝基苯基-N-乙酰-β-D-氨基葡萄糖苷(pNP-β-D-GlcNAc)或p-硝基苯基-N-乙酰-β-D-氨基半乳糖苷(pNP-β-D-GalNAc)为底物,该酶的最适pH在4.8—5.0 之间,最适温度在44—47℃之间。对酶的热稳定性研究表明,温度对酶的热变性作用表现为两相变性曲线,Km 值分别为0.36 m m ol/L (pNP-β-D-GlcNAc为底物)和0.67 m m ol/L (pNP-β-D-GalNAc 为底物),N-乙酰氨基葡萄糖(GlcNAc)和N-乙酰氨基半乳糖(GalNAc)是酶活性的竞争性抑制剂,Ag+ 和Hg2+ 是酶活性的强抑制剂,金属离子Fe2+ 、Fe3+ 和Cu2+ 也抑制酶活性。  相似文献   

3.
 通过测定海枣曲霉β-半乳糖苷酶的底物特异性,表明该酶水解对-硝基酚基β-半乳糖苷(PNP-β-gal)的活力最高。该酶水解PNP-β-gal,乳糖和对-硝基酚基β-D-岩藻糖苷(PNP-β-fuc)的相对活力为100,63.1,10.3。不同测定方法的结果均表明,这一PNP-β-fuc水解活性来自β-半乳糖苷酶本身。Hg~(2+)、D-半乳糖和D-半乳糖-r-内酯对该酶有强烈的抑制作用,Ag~+和4mol/l脲也有较强的抑制作用。该酶水解PNP-β-gal和乳糖的Km值分别为1.3及36.2mmol/l,Vmax则分别为478和189μmol.min~(-1).mg~(-1)。Lineweaver-Burk作图法及Dixon作图法均表明D-半乳糖和D-半乳糖酸-γ-内酯对该酶显示竞争性抑制作用,其Ki分别为4和0.9mmol/l。  相似文献   

4.
本文研究了海枣曲霉(Aspergillus phoenicis)β-葡萄糖苷酶的底物特异性以及不同化学试剂对酶活力的影响。该酶水解对一硝基酚基-β-葡萄糖苷、纤维二糖和水杨素的相对活力分别为100、180和67.3。水解对一硝基酚基β-葡萄糖苷和纤维二糖的Km值分别为0.97mmol/L和1 8mmol/L,Vmax分别为576μmol min-1.mg-1和595μmol.min-1.mg-1.mg-1。Ag+、D-葡萄糖和纤维二糖对酶活力有强烈的抑制作用。Lineweaver—Burk作图法及Dixon作图法表明D-葡萄糖对该酶显示竞争性抑制作用,其Ki值分别为30mmol/L和3.4mmol/L。  相似文献   

5.
β-N-乙酰-D-氨基葡萄糖苷酶与南美白对虾的食物消化吸收、蜕壳生长有着密切关系. 海水里存在的有机污染物将影响酶生理功能, 从而进一步影响虾的正常蜕壳,严重将导致对虾的死亡. 醋酸酐是常用的有机溶剂, 故本文应用动力学方法研究醋酸酐对南美白对虾β-N-乙酰-D-氨基葡萄糖苷酶催化pNP-NAG水解时酶活力的变化规律. 表明在醋酸酐浓度低于20.0 mmol/L, 酶的抑制作用是可逆的, 测得醋酸酐对酶抑制的IC50为9.0 mmol/L. 用双倒数作图法测定醋酸酐与游离酶(E)和酶-底物络合物(ES)的结合平衡常数, 结果显示醋酸酐是酶的非竞争性抑制剂. 用底物反应动力学方法观测在不同底物浓度下酶在0.0、3.0、6.0、9.0、12.0 mmol/L的醋酸酐溶液中的失活过程,分别测定了酶的微观失活速度常数k+0及复活速度常数k-0, 结果表明醋酸酐对酶的影响是快速结合再缓慢失活的过程. 比较微观失活速度常数k+0及复活速度常数k-0, 结果暗示在高浓度的醋酸酐溶液中, 酶将完全失活.  相似文献   

6.
β-N-乙酰氨基葡萄糖苷酶体,可作用于几丁质或壳聚糖等天然底物,从末端水解产生N-乙酰-β-D氨基葡萄糖 (GlcNAc) 单体,其在医药和农业领域有较广泛的用途。文中克隆了耐热菌凝结芽孢杆菌Bacillus coagulans DMS1的β-N-乙酰氨基葡萄糖苷酶基因 (BcNagZ),并成功在大肠杆菌Escherichia coli BL21(DE3) 进行了分泌表达,蛋白表达量达到0.76 mg/mL。纯化后的BcNagZ分子量为61.3 kDa,测得的比活力为5.918 U/mg;进一步对该酶进行表征,结果显示酶的最适反应pH为5.5,最适反应温度为75 ℃,在65 ℃处理30 min后还有85%的残余酶活力,表明该酶具有良好的热稳定性。该酶的米氏常数Km为0.23 mmol/L,Vmax为0.043 1 mmol/(L·min)。重组BcNagZ可以水解胶体几丁质得到微量的GlcNAc,可以将二糖水解为单糖;偶联已报道的外切几丁质酶AMcase,可以有效地将胶体几丁质水解为GlcNAc,得率达到86.93%。  相似文献   

7.
N-乙酰氨基葡萄糖苷酶作用于肽聚糖或几丁质,从其非还原末端水解产生β-D-N-乙酰氨基葡萄糖单体,该酶在细胞壁代谢过程中起重要作用,在医药和生物技术领域也有广泛的应用。【目的】克隆表达来源于兼性嗜碱菌Bacillus pseudofirmus 703的β-N-乙酰葡糖胺糖苷酶NagZ703,为获得乙酰氨基葡萄糖单体奠定基础。【方法】以B.pseudofirmus703基因组DNA为模板,克隆得到了β-N-乙酰氨基葡萄糖苷酶基因NagZ703,通过构建pET28a-nagZ703表达载体,在大肠杆菌BL21(DE3)中诱导表达NagZ703,利用镍柱纯化得到NagZ703纯蛋白,并对其酶学和生化性质进行分析。【结果】NagZ703与其同源蛋白多序列比对分析结果表明,NagZ703属于糖苷水解酶3家族(GH3),由2个结构域构成,催化活性中心由位于N端结构域的Arg232-His234-Arg318组成,和研究最多的Bacillussubtilis168来源的BsNagZ氨基酸的序列相似性为37%。酶学性质分析表明,以对硝基酚-β-乙酰氨基葡萄糖苷(pNP-β-GlcNAc)为底物,NagZ703的最适反应温度和pH分别为60°C和pH 6.5,比酶活为10.79 U/mg,其Km和Vmax分别为0.276 mmol/L和0.612 mmol/(mg·min)。该酶具有较好的稳定性,在50°C处理30 min,或在pH 6.0–10.5条件下,4°C保存12 h后,仍保留80%以上的酶活力。EDTA不影响该酶的活性,推测其为非金属依赖酶,且Hg2+可完全抑制酶活性。【结论】本研究将兼性嗜碱菌Bacillus pseudofirmus 703来源的β-N-乙酰葡糖胺糖苷酶NagZ703在大肠杆菌中成功表达和纯化,并分析了其酶学性质;NagZ703的最适pH为6.5,没有表现出耐盐嗜碱的特征;NagZ703能水解胶体几丁质产生GlcNAc,为酶解生产GlcNAc提供了一条可行的思路。  相似文献   

8.
番茄系统感染TMV(tobacco m osaicvirus)诱导叶β-N-乙酰氨基己糖苷酶活性升高。番茄叶胞外提取液经冰冻干燥浓缩、- 20℃丙酮沉淀、CM-Sephadex C-25 离子交换层析,PBE 94(Polybuffer Exchanger 94, Sigm a)聚焦层析和Sephadex G-150 凝胶层析纯化,获得纯化的β-N-乙酰氨基己糖苷酶。凝胶层析测得该酶的分子量为145 kD,SDS-PAGE测得该酶的分子量为75 kD,证明该酶由两个亚基构成。该酶能水解p-硝基苯基-N-乙酰-β-D-氨基葡萄糖苷(pNP-β-D-GlcNAc)和P-硝基苯基-N-乙酰-β-D-氨基半乳糖苷(pNP-β-D-GalNAc)两种底物,能被过碘酸氧化,Schiff试剂染色。在感染TMV 的番茄叶片中,β-N-乙酰氨基己糖苷酶活性大部分位于胞外  相似文献   

9.
内切β-N-乙酰氨基葡萄糖苷酶广泛应用于糖生物学研究和工业生产。本研究从苜蓿链霉菌Streptomyces alfalfae ACCC 40021中克隆并原核表达了一个新的内切β-N-乙酰氨基葡萄糖苷酶,该酶最适反应温度为35℃,最适pH为6.0,具有良好的pH稳定性、温度稳定性和高比活(1×106 U/mg)的特性,可催化不同蛋白底物去糖基化,具有作为工具酶和生物催化剂的潜力。  相似文献   

10.
用从系统感染TMV(tobaccomosaicvirus)的番茄叶胞外蛋白提取液中纯化的β-N-酰氨基已糖苷酸为材料,研究了该酶的部分性质,以P-硝基苯基-N-乙酰-β-D-氨基葡萄糖苷(pNP-β-D-GNAc)或P-硝基苯基-N-乙酰-β-D-D氨基半乳糖苷(pNP-β-D-GalNAc)为底物,该酶的最适PH在4.8-5.0之间,最适温度在44-47℃之间,对酶的热稳定性研究表明,温度对酶的  相似文献   

11.
系统感染TMV的番茄叶胞外提取液经冰冻干燥浓缩、-20℃丙酮沉淀、离子交换柱层析和凝胶柱层析纯化,获得4种β-N-乙酰氨基己糖苷酶。这些酶是由75kD亚基构成的电荷异构体(chargeisomer),用过碘酸-Schiff反应证明是糖蛋白,以D-硝基苯-N-乙酰-β-D-氨基葡萄糖苷(pNP-β-D-GlcNAc)和p-硝基苯-N-乙酰-β-D-氨基半乳糖苷(pNP-β-D-GalNAc)为底物,这些酶具有相似的性质。N-乙酸氨基葡萄糖(GlcNAc)和N-乙酰氨基半乳糖(GalNAc)是这些酶的竞争性抑制剂,Ag+和Hg2+是它们的强抑制剂,Fe2+、Fe3+和Cu2+也抑制其活性。  相似文献   

12.
【目标】N-乙酰-β-D-氨基葡萄糖糖苷酶(NAGase)是一种重要的几丁质分解酶,能从N-乙酰葡萄糖苷的非还原端催化去除β-1,4-N-乙酰-D-氨基葡萄糖残基,参与了昆虫外骨骼的蜕皮过程。研究蜜蜂该酶的特征有助于阐明其在蜜蜂发育过程中的作用机制。【方法】采用40%-70%硫酸铵分级沉淀、DEAE-纤维素离子交换层析和葡聚糖G-100凝胶过滤层析的方法从意大利蜜蜂Apis mellifera ligustica幼虫体内分离纯化NAGase。以对-硝基苯-N-乙酰-β-D-氨基葡萄糖苷(pNP-NAG)为底物检测该酶的活力,用native PAGE和SDS-PAGE检测酶的纯度。IEF-PAGE测定该酶等电点。葡聚糖G-200凝胶过滤层析测定酶的总分子量。【结果】结果显示,纯化的NAGase酶的比活力为803. 09 U/mg,总分子量为77. 3 kD。结合SDS-PAGE表明该酶由两个具有相同分子量(39 k D)的亚基组成。该酶等电点为4. 8。酶水解底物pNP-NAG的过程遵循米氏方程,米氏常数(Km)和最大反应速度(Vm)分别为0. 11 mmol/L和17. 65μmol/L·min。该酶水解反应的最适pH和最适温度分别为pH 5. 5和60℃。酶催化pNP-NAG反应的活化能为64. 8 k J/mol。Pb2+,Cu2+,Zn2+和Al3+对该酶有不同程度的抑制作用。【结论】本研究描述了意大利蜜蜂NAGase的分离纯化方法及其理化性质,为进一步进行蜜蜂NAGase的结构解析和功能研究奠定基础。  相似文献   

13.
β-糖苷酶(ttβGLY)是Thermus thermophilus产生的一种耐高温酶,以乳糖为底物的酶反应研究表明:该酶具有较高的乳糖水解活性,其最适温度为70℃,最适pH为7.0,乳糖水解的Km=1.566mmol/L,Vmax=0.406mmol/min,在70℃有较好的热稳定性。该酶同时具有较强的转糖基活性,在以40%乳糖为底物,加酶量42.5U/mL、反应温度70℃、反应时间16h的条件下,低聚半乳糖的合成率达到35.3%。水解产物葡萄糖对乳糖水解反应和转糖基反应具有抑制作用,是影响GOS合成的重要因素。  相似文献   

14.
本研究以中华绒螯蟹内脏为材料,经过硫酸铵沉淀分级分离、两次DEAE-32离子交换柱层析和Sephadex G-100分子筛柱层析纯化,获得比活力为4490.79U/mg、纯化倍数为28.07倍的聚丙烯酰胺凝胶电泳纯的N-乙酰-β-D-氨基葡萄糖苷酶制剂。酶分子中各亚基的分子量分别为121.219、8.63和73.48 kD,等电点为4.5。以对-硝基苯-N-乙酰-β-D-氨基葡萄糖为底物,进行酶催化底物水解的反应动力学研究,结果表明:酶催化底物反应的最适pH为5.5,最适温度为45℃。该酶在pH4.9—9.3区域或40℃以下处理30min,酶活力保持稳定。酶促反应动力学符合米氏双曲线方程,测得米氏常数Km为0.357 mmol/L,最大反应速度Vm为10.41μmol/L.min。酶催化pNP-β-D-GlcNAc反应的活化能为76.50kJ/mol。金属离子对酶的效应试验表明:Mg^2+、Ca^2+和Ba^2+对酶活力没有影响。Na+对酶有激活作用,Li^+、K^+、Zn^2+、Hg^2+、Pb^2+、Cu^2+和Al3+对酶活力表现出不同程度的抑制作用。  相似文献   

15.
以甘蔗品种'新台糖22号'为试验材料,在伸长初期以200 mg/L GA3进行叶面喷施处理,对照喷清水,研究GA3处理后甘蔗节间糖苷酶、过氧化物酶、过氧化氢酶的变化,以揭示赤霉素诱导甘蔗节间伸长与相关酶活性的关系.结果表明:(1)GA3处理的株高在各个时期显著高于对照,而且在处理后7、14和28 d分别比对照提高了17.32%、14.50%和8.35%,GA3处理引起甘蔗植株表现的高度优势一直保持到后期,节间伸长效果主要是在茎的中部(5~10节).(2)GA3处理后α-葡萄糖苷酶和α-甘露糖苷酶的活性较对照显著下降;POD和β-半乳糖苷酶的活性也略有下降;α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶、过氧化氢酶的活性显著提高;β-葡萄糖苷酶的活性也有一定程度提高.由此推测,外源GA3主要通过调节α-葡萄糖苷酶活性、α-甘露糖苷酶、α-半乳糖苷酶、β-N-乙酰氨基已糖苷酶活性和过氧化氢酶,其次是POD、β-半乳糖苷酶和β-葡萄糖苷酶活性,最终达到节间伸长效果.  相似文献   

16.
应用动力学方法研究了太平洋白对虾(Penaeusvannamei)β-N-乙酰-D-氨基葡萄糖苷酶在二甲亚砜溶液中以pNP-β-D-GlcNAc为底物时酶活力的变化规律.表明酶在DMSO浓度低于4.20mol/L,酶的失活过程是可逆的,DMSO并不造成酶绝对量的减少,仅对酶的活力发生可逆的下降.测得DMSO对酶抑制的IC50为1.2mol/L.观测了在不同底物浓度下NAGase在0、0.35、0.70、1.05、1.40、1.75mol/L的DMSO溶液中的失活过程,分别测定了游离酶(E)和酶-底物络合物(ES)的微观失活速度常数k+0和k′+0比较结果(k+0值远远大于k′+0)表明,在DMSO溶液中游离酶比酶-底物络合物更易失活,即底物的存在对于酶被DMSO的失活具有明显的保护作用.随着DMSO浓度的增加,游离酶的逆向微观复活速度常数k-0却不断降低,说明在高浓度DMSO环境中,NAGase可逆恢复的能力逐渐微弱.  相似文献   

17.
研究了比色法测定饲用α-半乳糖苷酶活力,以对硝基苯酚-α-D-吡喃半乳糖苷为底物和对硝基苯酚作标准产物。酶活力的测定条件受很多因素的影响,如酶浸提液的pH、酶液稀释倍数、反应温度、作用时间。其中稀释倍数和pH的影响较为显著。稀释酶液的酶活测定值在0.02~0.07U/mL内较为合适。考虑到动物饲用酶制剂的特殊性,测定α-半乳糖苷酶活力时建议规定pH为5.5,反应温度为40℃。根据研究结果,反应时间采用10min,比色波长405nm为宜。  相似文献   

18.
筛选了真菌、细菌和放线菌共1121株,其中有β-HexNAcasc活力的有237株,在所筛选菌中只要有β—GlcNAcase活力,也就有β-GalNAcase活力,但两酶比值(β-GlcNAcase/β—Gal-Nacase)不同。所筛选出的溜曲霉(ASP.tamarii)S215为由土壤中分离的,其产酶最适条件为5%麸皮液体培养基,28—30℃振荡培养5—6天,补充碳源如纤维二糖、葡萄糖胺、半乳糖胺或者补充氮源(NH4)2SO4及NH4NO3,可以稍稍提高酶活。在溜曲霉的培养液中除β-GlcNAcase及β-GalNAcase外,还有a-半乳糖苷酶、β一半乳糖苷酶、β-葡萄糖苷酶、β-岩藻糖苷酶及α-甘露糖苷酶。  相似文献   

19.
为了探讨日本鳗鲡(Anguilla japonica)N-乙酰-β-D-氨基葡萄糖苷酶(EC3.2.1.52, NAGase)的分离纯化及其酶学性质, 通过硫酸铵沉淀分级分离、Sephadex G-100分子筛凝胶柱层析和DEAE-32离子交换柱层析纯化NAGase, 经聚丙烯酰胺凝胶电泳(PAGE)和SDS-PAGE鉴定酶的纯度、测定酶蛋白亚基分子质量; 以对-硝基苯-N-乙酰-β-D-氨基葡萄糖为底物, 研究NAGase催化反应的动力学参数, 探讨其酶学性质。结果表明: 日本鳗鲡肠道NAGase纯酶制剂比活力为2517.40 U/mg, 酶蛋白亚基分子质量为69.98 kD, 酶的最适pH、最适温度、米氏常数Km和最大反应速度Vmax分别为6.0、60℃、0.336 mmol/L和7.634 μmol/(L·min); 酶在pH 4.8—7.2较稳定, 在温度60℃以下具有较好的热稳定性, 在65℃以上酶迅速失活。Mg2+、Ca2+、Mn2+、Cu2+...  相似文献   

20.
以对硝基苯糖苷基为底物,测定了慈菇的12种糖苷酶,其中α-甘露糖苷酶、α-和β-半乳糖苷酶活力较高;经硫酸铵分级沉淀,SephadexG-150分子筛层析,ConASepharose4B亲和层析,DEAE-SepharoseCL-6B离子交换层析,从慈菇抽提液纯化了α-半乳糖苷酶。纯化酶的比活提高1072倍,活力回收15.6%,在圆盘聚丙烯酰胺凝胶电泳和SDS-PAGE上均显示1条蛋白质带,在α-半乳糖苷酶浓度为150mU/ml的溶液中测不到其他糖苷酶的活力。慈菇α-半乳糖苷酶的分子量用SephadexG-100凝胶过滤柱测定或在SDS-PAGE上测定均为60kD,酶反应的最适pH在5.8附近,最适温度为60℃。该酶分解对硝基苯基-α-半乳糖苷的K_m值为3.7×10 ̄(-4)mol/L,V_m值为2.1×10 ̄(-4)mol/L。银离子、汞离子显著抑制酶活力,D-半乳糖和密二糖均竞争性地抑制该酶水解对硝基苯基α-D-半乳糖苷的活力,根据Dixon作图求得其K_i值分别为0.92×10 ̄(-3)mol/L和1.98×10 ̄(-3)mol/L。2-脱氧-D-半乳糖和L-岩藻糖为酶活力的非竞争性抑制剂。化学修饰  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号