首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We investigated morphological alterations induced by s.c. injection of 2.5 microg of Bothrops jararaca venom in rats. Intense disorganisation of collagen fibres was observed 1 min after the venom injection, particularly at regions near vessels and nerves. Mast cells were degranulated, and erythrocytes were seen leaving venules throughout the endothelial junctions. At this time, damaged endothelial cells were not observed. In rats envenomed as above, but immediately after cardiorespiratory failure induced by deep ether anaesthesia, alterations in the connective tissue structures, as previously described, were not observed. The mediation of this haemorrhage was investigated by injecting the venom into the foot pad of mice and compared to the mediation of oedema. Local haemorrhage was significantly reduced in mice pre-treated with capsaicin or guanethidine or submitted to a surgical section of sciatic and saphenous nerves. In these animals, oedema was not affected. Groups treated with methysergide or morphine showed both haemorrhage and oedema significantly reduced. Indomethacin or dexamethasone pre-treatments significantly reduced the oedema, but not the haemorrhage. Moreover, in animals treated with promethazine or mepyramine, oedema and haemorrhage were not affected. These data suggest that local haemorrhage induced by Bothrops jararaca venom is partially controlled by serotonin and neurohumoral mediators. Furthermore, results indicate that haemorrhage and oedema are mediated by different pharmacological systems.  相似文献   

2.

Background

The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV).

Methodology/Principal Findings

Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na+ channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors.

Conclusion/Significance

Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating the diversity of targets triggered by PNV toxins.  相似文献   

3.
We investigated whether fenoterol was able to enhance contractile responsiveness to neurokinin A (NKA) on the guinea-pig isolated trachea. We then studied the effects of two inhibitors of nuclear factor kappa B (NFkappaB), gliotoxin and pyrrolidine dithiocarbamate, and of the tachykinin NK(1), NK(2) and NK(3) receptor antagonists, SR 140333, SR 48968 and SR 142801 and determined whether tachykinin receptor gene expression was up-regulated in the trachea after exposure to fenoterol. Fenoterol (0.1 microM, 15 h, 21 degrees C) induced an increased contractile response to NKA (mean of difference in maximal tension between control and fenoterol +/- S.E.M; +0.47 +/- 0.14 g, n = 26, P < 0.01). This hyperresponsiveness was strongly reduced by co-incubation with gliotoxin (0.1 microg/ml) or pyrrolidine dithiocarbamate (0.1 mM) and abolished by SR 140333 (0.1 microM) and SR 142801 (0.1 microM). SR 48968 (0.1 microM) diminished the tracheal contractility to NKA but failed to reduce the hyperreactivity induced by fenoterol. Tachykinin NK(1) receptor (NK(1)R), NK(2) receptor (NK(2)R) and NK(3) receptor (NK(3)R) gene expression was analyzed by semiquantitative RT-PCR. Compared to control tissues, NK(1)R and NK(2)R mRNA expression was increased by about 1.6-fold and 1.4-fold, respectively, in tissues treated with fenoterol. We were unable to detect the presence of NK(3)R mRNA in the guinea-pig trachea. In conclusion, fenoterol induces tracheal hyperresponsiveness to NKA and an up-regulation of NK(1)R and NK(2)R gene expression. The hyperresponsiveness implicates the NFkappaB pathway and is abolished by tachykinin NK(1) (SR 140333) and NK(3) (SR 142801) receptor antagonists.  相似文献   

4.
Phoneutria nigriventer spider venom (PNV) contains Ca(2+), K(+) and Na(+) channel-acting peptides that affect neurotransmitter release and causes excitotoxicity in PNS and CNS. It has been demonstrated that PNV causes blood-brain barrier (BBB) breakdown of hippocampal microvessels time-dependently through enhanced microtubule-mediated vesicular transport. Herein, it is hypothesized that PNV can cause BBB breakdown in the hippocampus and cerebellum time-dependently through other molecular mechanisms. The BBB integrity was assessed through the analysis of expression of Poly-glycoprotein (P-gp) efflux transporter protein, laminin from basement membrane and endothelial tight junctional and adhesion junctional (TJ/AJ) proteins. Phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) expression, which are known to have a role in the phosphorylation of junctional proteins and BBB opening, were also investigated. Astrocytes P-gp activity was determined by flow cytometry. The study demonstrated temporary decreased expression of laminin, TJ and AJ proteins (ZO1//occludin//claudin-5//beta-catenin) and P-gp (more prominently in hippocampus), which was completely or partially resolved between 2 and 5?h (and more quickly for cerebellum). PNV inhibited P-gp activity in astrocytes. PP2A phosphorylation, which inhibits the enzyme activity, was increased in both regions (15-45?min); however the phosphorylation level returned to baseline after 2?h. In conclusion, PNV disrupts paracellular transport in the BBB and possesses substrates for the active P-gp efflux transporter located in the BBB complex. Further studies into cellular mechanisms of astrocyte/endothelial interactions, using PNV as tool, may identify how astrocytes regulate the BBB, a characteristic that may be useful for the temporary opening of the BBB.  相似文献   

5.
In the present study we have investigated some of the mechanisms underlying B(1) kinin receptor-induced paw edema formation in rats that had been treated with LPS, paying special attention to the involvement of neurogenic inflammation. Intradermal (i.d.) injection of the B(1) receptor agonist des-Arg(9)-BK (100 nmol/paw) resulted in a marked increase in paw volume in animals pre-treated with LPS (0.40+/-0.06 ml). The co-injection of the selective NK(1) FK888 (1 nmol/paw) or NK(2) SR 48968 (3 nmol/paw) receptor antagonists resulted in a significant inhibition of the edema induced by des-Arg(9)-BK (30+/-4 and 25+/-7%, respectively). The NK(3) SR 142801 (3 nmol/paw) antagonist did not demonstrate any significant effect on B(1) receptor-mediated paw edema. The edema induced by des-Arg(9)-BK was also significantly inhibited (33+/-5%) by the co-injection of the CGRP-receptor antagonist CGRP 8-37 (1 nmol/paw) or by treatment of animals with capsaicin (50 mgkg(-1), s.c., 48 h, prior) (45+/-4%). The pre-treatment of animals with methysergide or with mianserin, 5-HT(1) and 5HT(2) antagonists, respectively (both 10 mgkg(-1), i.p. 30 min), resulted in a significant reduction of the edema mediated by B(1) receptors (23+/-5 and 20+/-3%, respectively). In addition, compound 48/80 (12 microg/paw, 24 h) significantly reduced des-Arg(9)-induced paw edema in rats pre-treated with LPS (23+/-3%), while the treatment of animals with the H(1) receptor antagonist pyrilamine (10 mgkg(-1), i.p., 30 min) failed to affect the edematogenic responses involving B(1) receptors. Finally, the co-injection of NOS inhibitors L-NAME (100 nmol/paw) or 7-NINA (10 nmol/paw) did not affect the rat paw edema caused by des-Arg(9)-BK, whereas they significantly inhibited BK-induced paw edema. Jointly, the results of the present study show that the edematogenic response mediated by the activation of B(1) receptors, in animals pre-treated with LPS, involves the release of tachykinins and CGRP, as well as serotonin, while NO and histamine seem not to be involved. Therefore, these data further support the notion that B(1) receptors have an important role in modulating the inflammatory processes.  相似文献   

6.
We have used tachykinin neurokinin-1 receptor (NK1 receptor) knockout mice to learn of the link between NK1 receptors and neutrophil accumulation in normal naive skin, as compared with inflamed skin. Intradermal substance P (300 pmol) induced edema formation in wild-type mice, but not in NK1 knockout mice, as expected. However, in contrast to IL-1beta (0.3 pmol), substance P did not induce neutrophil accumulation in wild-type mice. IL-1beta-induced neutrophil accumulation was similar in wild-type and knockout mice, but a significant (p < 0.05) contributory effect of added NK1 agonists, which by themselves have no effect on neutrophil accumulation in normal skin, was observed. The results support the concept that NK1 agonists such as substance P cannot act on their own to mediate neutrophil accumulation in naive skin and provide direct evidence that in inflamed skin, under certain circumstances, the NK1 receptor can play a pivotal role in modulating neutrophil accumulation during the ongoing inflammatory process. We investigated responses to two inflammatory stimuli (carrageenin and zymosan). Neutrophil accumulation was significantly attenuated (p < 0.001) in carrageenin- but not zymosan-induced inflammation in NK1 knockout mice. The carrageenin (500 microg)-induced response was inhibited (p < 0.05) by a NK1 receptor antagonist, SR140333 (480 nmol/kg i.v. at -5 min), in the wild-type group. The bradykinin B1 and B2 receptor antagonists (desArg9[Leu8]bradykinin and HOE 140) each reduced neutrophil accumulation to carrageenin in wild-type animals (p < 0.05), but did not cause further reduction of the suppressed response of knockout mice. The results provide evidence that kinin receptors participate in NK1 receptor-dependent neutrophil accumulation in inflamed mouse skin.  相似文献   

7.
Gastroesophageal acid reflux (GER) is a common disorder associated with the exacerbation of asthma. In this study we investigated the effects on the airways of intraoesophageal HCl instillation in the rabbit and the role of tachykinins in these effects. In anaesthetized New Zealand rabbits bronchopulmonary functions [total lung resistance (R(L)) and dynamic compliance (C(dyn))] were calculated before and after HCl intraoesophageal instillation. Infusion of HCl induced a significant bronchoconstriction (P < 0.05) in the terms of R(L) and C(dyn) changes, that were increased by phosphoramidon pre-treatment and reduced by capsaicin pre-treatment. Moreover, a pre-treatment with SR 48968, a tachykinin NK2 receptor antagonist, or SR 140333, a NK1 receptor antagonist, significantly inhibited the bronchoconstriction induced by intraoesophageal HCl infusion in terms of R(L) and C(dyn)changes. Finally, the HCl induced bronchoconstriction was unaffected by SR 142801, a tachykinin NK3 receptor antagonist.In conclusion these results suggest that bronchoconstriction induced by intraoesophageal HCl infusion is mainly dependent on the release of tachykinins and that both NK1 and NK2 tachykinin receptors are involved.  相似文献   

8.
The proteomes of the venoms of the Brazilian wandering "armed" spiders Phoneutria nigriventer, Phoneutria reidyi, and Phoneutria keyserlingi, were compared using two-dimensional gel electrophoresis. The venom components were also fractionated using a combination of preparative reverse phase HPLC on Vydac C4, analytical RP-HPLC on Vydac C8 and C18 and cation exchange FPLC on Resource S at pH 6.1 and 4.7, or anion exchange HPLC on Synchropak AX-300 at pH 8.6. The amino acid sequences of the native and S-pyridyl-ethylated proteins and peptides derived from them by enzymatic digestion and chemical cleavages were determined using a Shimadzu PPSQ-21(A) automated protein sequencer, and by MS/MS collision induced dissociations. To date nearly 400 peptides and proteins (1.2-27 kDa) have been isolated in a pure state and, of these, more than 100 have had their complete or partial amino acid sequences determined. These sequences demonstrate, as might be expected, that the venoms of P. reidyi and P. keyserlingi (Family: Ctenidae) both contain a similar range of isoforms of the neurotoxins as those previously isolated from P. nigriventer which are active on neuronal ion (Ca(2+), Na(+) and K(+)) channels and NMDA-type glutamate receptors. In addition two new families of small (3-4 kDa) toxins, some larger protein (>10 kDa) components, and two serine proteinases of the venom of P. nigriventer are described. These enzymes may be responsible for some of the post-translational modification observed in some of the venom components.  相似文献   

9.
Rats are commonly used in anaphylaxis models, mainly in intestinal anaphylaxis. Hypersensitivity mechanisms are complex and they are not clearly defined. Ovalbumin (OVA) is commonly used for studies on the hypersensitivity mechanism. However, the potential pro-inflammatory mediators induced by this antigen in the model of paw oedema in immunized rats are still not completely understood. This work examines the pharmacological modulation of several mediators involved in rat hind paw immune oedema induced by OVA. Wistar rats were previously immunized (14-18 days) with OVA (30 microg, intraperitoneally) or sham-sensitized with aluminum hydroxide (control). The paw volumes were measured before the antigenic stimuli and 1, 2, 3 and 4 h after the intraplantar injection of OVA (10 microg/paw). Subcutaneous injection of dexamethasone, diphenhydramine, cyproheptadine, chlorpromazine or methysergide significantly inhibited (p < 0.05) the allergic paw oedema. The dual inhibitor of cyclooxygenase and lipoxygenase (NDGA), the cyclooxygenase inhibitor (indomethacin), the lipoxygenase inhibitor (MK-886), the PAF antagonist (WEB 2086), the mast cell stabilizer (ketotifen), and the anti-histamine (meclizine) did not inhibit the immune oedema. In addition, thalidomide and pentoxifylline (anti-tumour necrosis factor drugs) were ineffective against OVA-induced oedema. The fact that indomethacin, MK-886, NDGA and WEB 2086 are unable to inhibit this allergic oedema indicates that the dexamethasone action seems not to be via phospholipase A2, but possibly due to the synthesis and/or the inhibitory activity of cytokines. The paw oedema inhibition by diphenhydramine, but not by meclizine, may suggest a different mechanism, which is independent of the effect of histamine. These data indicate that allergic oedema is more sensitive to anti-serotonin drugs, mainly anti-5-HT2, suggesting that the principal mediator of this inflammatory response is serotonin.  相似文献   

10.
Substance P is ubiquitous undecapeptide belonging to the tachykinins family. It has been found in the hypothalamus and is involved in the hypothalamo-hypophysial axis in several mammals, including human. Previous studies have shown that substance P increases GH secretions in rats and human. In this study, we have shown that intravenously infused substance P in sheep caused an increased level of Growth Hormone (GH) and GH-Releasing Hormone (GHRH), and decreased Somatotropin Release Inhibiting Hormone (SRIH) secretions. GH was obtained from peripheral blood. GHRH and SRIH were directly collected from hypophysial portal blood, using a trans-nasal surgery technique in a vigil sheep that allowed accessing to hypothalamo-hypophysial portal vessels. Hormones assays were performed by radioimmunoassay (RIA). Moreover, we showed that substance P-induced GH and GHRH secretion appears to be mediated by NK2 tachykinin receptors, since it is specifically blocked by a non peptidic tachykinin NK2 receptor antagonist (SR48968, Sanofi, Montpellier, France) whereas a non peptidic tachykinin NK1 antagonist (SR140333, Sanofi, Montpellier, France) failed to modify GH and GHRH hormones secretions.  相似文献   

11.
Effects of two commonly used tachykinin NK-3 receptor antagonists (SR 142801 and R820) intrathecally (i.t.) administered were assessed in the rat tail-flick test. SR142801 and its (R)-enantiomer SR142806 (1.3, 6.5 and 65 nmol) were found as potent as senktide and [MePhe7]NKB (NK-3 selective agonists) to induce transient antinociceptive effects. Naloxone (10 microg) and R820 (6.5 nmol) blocked reversibly the responses to 6.5 nmol senktide, [MePhe7]NKB, SR142801 and SR142806 when administered i.t. 15 min earlier. However, the antinociceptive responses induced by SR142801 and SR142806 were not affected by i.t. pretreatments with NK-1 (6.5 nmol SR140333) and NK-2 (6.5 nmol SR48968) receptor antagonists. In control experiments, the NK-1 and NK-2 antagonists prevented the hyperalgesic effects to NK-1 ([Sar9,Met(O2)11]SP) and NK-2 ([beta-Ala8] NKA(4-10)) receptor agonists (6.5 nmol i.t.), respectively. R820 had no direct effect on nociceptive threshold and failed to alter angiotensin II-induced antinociception. The data suggest that the antinociceptive effect of SR142801 is due to an agonist effect at NK-3 receptor in the rat spinal cord that involves a local opioid mechanism. These results can be best explained by the existence of inter-species NK-3 receptor subtypes.  相似文献   

12.
Corboz MR  Fernandez X  Egan RW  Hey JA 《Life sciences》2001,69(10):1203-1211
In vivo studies were conducted in the guinea-pig to investigate the activity of the selective ORL1 receptor agonist nociceptin/orphanin FQ against capsaicin-induced bronchoconstriction, a response mediated by the release of tachykinins from pulmonary sensory nerves. Anesthetized guinea-pigs were ventilated with a rodent ventilator and placed in a whole-body plethysmograph, and pulmonary resistance (R(L)) and dynamic lung compliance (C(Dyn)) were monitored. Intravenous administration of nociceptin/orphanin FQ (0.3 mg/kg) inhibited the capsaicin-induced bronchoconstriction. The new nonpeptide ORL1 receptor antagonist 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397) administered intravenously (1 mg/kg) produced a significant blockade of the inhibitory effect of nociceptin/orphanin FQ (0.3 mg/kg) on capsaicin-induced bronchoconstriction, whereas the nonselective opioid receptor antagonist naloxone (1 mg/kg) had no effect. Nociceptin/orphanin FQ (0.3 mg/kg) did not affect the bronchoconstriction induced exogenously by the tachykinin NK2 receptor agonist [beta-ala8]-neurokinin A (4-10). We conclude that nociceptin inhibits in vivo capsaicin-evoked tachykinin release from sensory nerve terminals in the guinea-pig by a prejunctional mechanism. This inhibitory action does not involve activation of opioid receptors.  相似文献   

13.
14.
Takahata K  Chen X  Monobe K  Tada M 《Life sciences》1999,64(13):PL165-PL171
The effects of capsaicin on cellular growth and intracellular calcium mobilization were examined in human cervical carcinoma derivation, HeLa cells. Capsaicin inhibited cellular growth and increased intracellular calcium level in HeLa cells. This capsaicin-induced intracellular calcium concentration rise was blocked by capsazepin, vanilloid (capsaicin) receptor antagonist. But, an intracellular calcium chelator BAPTA/AM did not block the inhibitory effect of capsaicin on cellular growth. These observations suggest that intracellular calcium mobilization is not required for the capsaicin-induced inhibition of cellular growth.  相似文献   

15.
Injection of capsaicin into the hindpaw has been employed as a model of chemogenic nociception in mice. Intraplantar injection of nociceptin (30–240 pmol) produced a significant and dose-dependent antinociceptive activity in the capsaicin test. The nociceptin N-terminal fragments, (1–11) and (1–13), were also active with a potency higher than nociceptin and comparable to nociceptin, respectively. Intraplantar injection of the nociceptin (1–7) fragment had no effect on capsaicin-induced nociception. Antinociception induced by nociceptin or nociceptin (1–13) was reversed significantly by intraplantar co-injection of [Nphe1]nociceptin (1–13)NH2, an orphan opioid receptor-like 1 (ORL1) receptor antagonist, whereas local injection of the antagonist did not interfere with the action of nociceptin (1–11). Nociceptin (1–11) was approximately 2.0-fold more potent than naturally occurring peptide nociceptin, and 10-fold more active than intraplantar morphine. Nociceptive licking/biting response to intraplantar injection of capsaicin was desensitized by repeated injections of capsaicin at the interval of 15 min. Desensitization induced by capsaicin was attenuated significantly by co-injection of nociceptin at much lower doses than antinociceptive ED50 for nociceptin. Capsaicin desensitization was also decreased by co-injection of nociceptin (1–11) and (1–13) to a similar extent. The present results indicate that not only nociceptin but also the N-terminal fragment (1–13) possesses a local peripheral antinociceptive action, which may be mediated by peripheral ORL1 receptors. In addition, the difference of the effective doses suggests that the antinociceptive action and inhibition of capsaicin-induced desenitization by nociceptin, nociceptin (1–11) and (1–13), may involve distinct mechanisms at the level of the peripheral nerve terminal.  相似文献   

16.
Abstract: The regulation of striatal cholinergic function by tachykinins was examined in urethane-anesthetized rats by using microdialysis. Substance P (0.01–1 µ M ), [Sar9,Met(O2)11]substance P (1–10 µ M ), septide (0.1–3 µ M ), neurokinin (NK) A (0.1–10 µ M ), and senktide (0.1–10 µ M ) produced concentration-dependent increases in striatal acetylcholine (ACh) release. Septide was the most potent agonist for inducing release of ACh, whereas the stimulating effect of senktide was less pronounced and more progressive in onset. The response to septide was prevented by intraperitoneal administration of the nonpeptide NK1 antagonist SR 140333 (1–3 mg/kg) but not by the nonpeptide NK2 receptor antagonist SR 48968, indicating that the effect was mediated specifically by NK1 receptors. ACh release caused by NKA was reduced by SR 48968 (1–3 mg/kg) and slightly affected by SR 140333, indicating a principal role for NK2 receptors in the peptide response. The similar efficacy of SR 140333 and SR 48968 in blocking substance P-induced ACh release suggested that the effect of this peptide involves the stimulation of both NK1 and NK2 receptors. Finally, our results indicate that the increase in striatal ACh release induced by the D1 agonist (+)-SKF-38393 (3 µ M ) may be mediated indirectly through local release of NKA or substance P acting at NK2 receptors.  相似文献   

17.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

18.
Agonists of the vanilloid receptor type 1 (VR1), such as capsaicin, induce an analgesic effect following an initial excitatory response. It has been demonstrated that the vanilloid system plays an important role in inflammatory hyperalgesia. In accordance, we show that the VR1 antagonist capsazepine (30 microg; i.pl.) prevented the thermal hyperalgesia induced by carrageenan or complete Freund's adjuvant (CFA) in mice. Furthermore, we studied whether this inflammation-induced activation of the vanilloid system could enhance the analgesic properties of capsaicin. A single administration of capsaicin (10 microg; i.pl.) induced in control mice an analgesic effect that lasted for 2 days. In contrast, in carrageenan-treated animals, the analgesic effect of this dose of capsaicin lasted for 6 days and in CFA-treated mice for 30 days. This prolongation of capsaicin-induced analgesia during inflammation was mediated through VR1 since it was completely blocked by coadministration of capsazepine (10 microg). Licking behavior induced by capsaicin in carrageenan- and CFA-treated mice was greater than in control animals. However, although capsaicin induced a more prolonged analgesia in CFA-treated mice, the licking behavior was greater in the carrageenan-treated group, suggesting that the prolongation of analgesia is independent of the initial nociceptive input. Overall, these results show that the analgesic effects of capsaicin are importantly enhanced during inflammation, supporting the fact that the stimulation of VR1 could perhaps constitute a suitable strategy to avoid inflammatory hyperalgesia.  相似文献   

19.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

20.
Substance P (SP) injection in the plantar region of rat hind paw caused a dose related inflammation, which reached a peak within 10 min of injection and declined after 60 min. Low doses (0.25-0.063 mg/kg) of SP-antagonists like (D-Pro2, D-Trp7,9)-SP and (D-Pro2, D-Phe7, D-Trp9)-SP pretreatment significantly inhibited the SP induced paw oedema, while higher doses (0.5-1 mg/kg) showed agonistic effects. Pretreatment with diphenhydramine alone or along with low doses of SP-antagonists was highly significant in blocking this inflammation, the latter combination being more effective than the former. Pretreatment with acute capsaicin produced a synergestic effect on SP induced paw oedema, while pretreatment with chronic capsaicin significantly inhibited this SP induced paw oedema. The results indicate involvement of histamine and possible therapeutic importance of capsaicin in SP mediated inflammatory type of responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号