首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A structured metabolic model is developed that describes the stoichiometry and kinetics of the biological P removal process. In this approach all relevant metabolic reactions underlying the metabolism, considering also components like adenosine triphosphate (ATP) and nic-otinamide-adenine dinucleotide (NADH(2)) are describedbased on biochemical pathways. As a consequence of the relations between the stoichiometry of the metabolic reactions and the reaction rates of components, the required number of kinetic relations to describe the process is reduced. The model describes the dynamics of the storage compounds which are considered separately from the active biomass. The model was validated in experiments at a constant sludge retention time of 8 days, over the anaerobic and aerobic phases in which the external oncentrations as well as the internal fractions of the relevant components involved in the P-removal process were monitored. These measurements include dissolved acetate, phosphate, and ammonium; oxygen consumption; poly-beta-hydroxybutyrate (PHB); glycogen; and active biomass. The model satisfactorily describes the dynamic behavior of all components during the anaerobicand aerobic phases.(c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
The biological phosphorus removal process is a process which depends basically on three internal storage compounds. Poly-beta-hydroxybutyrate (PHB) produced during the anaerobic phase is used as substrate for biomass, polyphosphate, and glycogen formation. The reaction rates of the aerobic processes are primarily determined by the PHB content of the cells. This PHB content is highly dynamic due to the conversions during the anaerobic and aerobic phase of the cycle and the ratio between substrate addition and biomass present in the reactor. The amount of biomass present in the reactor is determined by the sludge retention time and growth rate. A metabolic model of the biological phosphorus removal process was developed and verified over a wide range of growth rates. The effect of different growth rates on the internal fractions of stored components was determined and described mathematically. One set of kinetic parameters was capable of describing the measured conversions of all components observed in the reactor as a function of the sludge retention time. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
In the anaerobic phase of a biological phosphorus removal process, acetate is taken up and converted to PHB utilizing both energy generated in the degradation of polyphosphate to phosphate, which is released, and energy generated in the conversion of glycogen to poly-beta-hydroxy butyrate (PHB). The phosphate/acetate ratio cannot be considered a metabolic constant, because the energy requirement for the uptake of acetate is strongly influenced by the pH value. The observed phosphate/acetate ratio shows a variation of 0.25 to 0.75 P-mol/C-mol in a pH range of 5.5 to 8.5. It is shown that stored glycogen takes part in the metabolism to provide reduction equivalents and energy for the conversion of acetate to PHB. A structured metabolic model, based on glycogen as the source of the reduction equivalents in the anaerobic phase and the effect of the pH on the energy requirement of the uptake of acetate, is developed. The model explains the experimental results satisfactorily. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
A metabolic model of the biological phosphorus removal process has been developed and validated previously for complex conversions during the process under anaerobic and aerobic conditions at different growth rates in sequencing batch reactors in steady state. For additional validation of the metabolic model, the model was applied to the dynamic conditions which occur during the start-up phase of the biological P removal in the presence and absence of non-polyP heterotrophic microorganisms. In a laboratory scale sequencing batch reactor, experiments were performed to examine the enrichment of the population with polyphosphate organisms during the start-up and the subsequent shift from non-polyP, heterotrophic organisms to polyP organisms in the sludge. The effect of different influent loading patterns for acetate and phosphate was studied. In these experiments, the maximal growth rate of the polyP organisms and the behavior of the internal storage compounds could be derived. The metabolic model was capable of describing the experimental results, without the need to adjust the kinetic or stoichiometric parameters obtained under steady state conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
The removal of phosphorus from wastewater is already widely applied. In many cases use is made of micro organisms capable of accumulating phosphorus as polyphosphate inside the cell. The main characteristic providing the competitive advantage to these polyphosphate accumulating bacteria is the capability to use polyphosphate, in the absence of external electron acceptors, as energy source for the uptake and storage of acetic acid in the form of polyhydroxybutyrate (PHB). The reduction equivalents for the formation of PHB are derived from the conversion of glycogen to PHB. Despite the widespread use and study of enhanced biological phosphorus removal no pure culture, having the above mentioned characteristics, has been isolated yet. All ecophysiological studies on these type of cultures have therefore been performed by enrichment cultures. This paper reviews the research on these type of organisms, and shows that it is possible to understand a complex microbial process on a metabolic level, both stoichiometrically and kinetically, without the availability of a pure culture.  相似文献   

6.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Recently, it was found that excess phosphorus (Pi) removal could be achieved in activated sludge with an aerobic/extended‐idle (AEI) process. In this study, batch tests were performed to further reveal the inducing mechanism of Pi removal involved in the AEI process. Unlike the classical anaerobic/aerobic process where an anaerobic Pi release along with a significant polyhydroxyalkanoate (PHA) accumulation drives polyphosphate (poly‐P) accumulating organisms (PAOs) to over‐store Pi as poly‐P, an idle Pi release accompanied by a low‐idle PHA production, which is usually considered to be detrimental for biological Pi removal, was observed to induce some cells to effectively uptake Pi in excess of metabolic requirement in the AEI process. With the increase of idle Pi release, Pi removal efficiency linearly increased. The results also showed that a long idle period with a low level of intracellular glycogen could significantly increase Pi release contents, thus remarkably enhancing Pi removal performances. Fluorescence in situ hybridization analysis further revealed that activated sludge in the AEI process contained 37.6% of Accumulibacter (PAOs) and 28.2% of Competibacter and Defluviicoccus‐related organisms (glycogen accumulating organisms). This study revealed an actually existent, yet previously unrecognized, inducing mechanism of poly‐P accumulation, and this mechanism behind the AEI regime may provide a scientific basis for the development of an alternative strategy for Pi removal from wastewaters. Biotechnol. Bioeng. 2012; 109: 2798–2807. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass . h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis.  相似文献   

9.
采用序批式反应器(SBR),对比厌氧/好氧(A/O)和厌氧/缺氧(A/A)2种运行模式对模拟生活和工业混合污水同时脱氮除磷的效能。结果表明:反硝化聚磷菌完全可以在厌氧/缺氧交替运行条件下得到富集,稳定运行的2种模式对有机物和P的去除率分别保持在90%和85%以上,且A/A SBR具有更强的释磷能力,其释磷量比A/O SBR高出1.2倍。进一步试验表明:磷的释放在有无硝酸盐的情况下效果是不同的。2个系统内污泥均有反硝化除磷能力,A/A SBR中所含反硝化聚磷菌(DPAO)的比例是A/O SBR的4.56倍。2种模式出水水质都能取得较好的效果,且能实现同步除磷脱氮,而反硝化除磷在生物除磷方面更具优势。  相似文献   

10.
Heavy metal and radionuclide contamination presents a significant environmental problem worldwide. Precipitation of heavy metals on membranes of cells that secrete phosphate has been shown to be an effective method of reducing the volume of these wastes, thus reducing the cost of disposal. A consortium of organisms, some of which secrete large quantities of phosphate, was enriched in a laboratory-scale sequencing batch reactor performing Enhanced Biological Phosphorus Removal, a treatment process widely used for removing phosphorus. Organisms collected after the aerobic phase of this process secreted phosphate and precipitated greater than 98% of the uranyl from a 1.5 mM uranyl nitrate solution when supplemented with an organic acid as a carbon source under anaerobic conditions. Transmission electron microscopy, energy dispersive x-ray spectroscopy, and fluorescence spectroscopy were used to identify the precipitate as membrane-associated uranyl phosphate, UO2HPO4.  相似文献   

11.
The metabolism of polyphosphate accumulating organisms (PAOs) has been widely studied through the use of lab-scale enrichments. Various metabolic models have been formulated, based on the results from lab-scale experiments using enriched PAO cultures. A comparison between the anaerobic stoichiometry predicted by metabolic models with that exhibited by full-scale sludge in enhanced biological phosphorus removal (EBPR) wastewater treatment plants (WWTPs) was performed in this study. Batch experiments were carried out with either acetate or propionate as the sole carbon source, using sludges from two different EBPR-WWTPs in Australia that achieved different phosphorus removal performances. The results support the hypothesis that the anaerobic degradation of glycogen is the primary source of reducing equivalents generated by PAOs, however, they also suggested a partial contribution of the tricarboxylic acid (TCA) cycle in some cases. The experimental results obtained when acetate was the carbon source suggest the involvement of the modified succinate-propionate pathway for the generation of poly-beta-hydroxyvalerate (PHV). Overall, the batch test results obtained from full-scale EBPR sludge with both substrates were generally well described by metabolic model predictions for PAOs.  相似文献   

12.
The presence of suitable carbon sources for enhanced biological phosphorus removal (EBPR) plays a key role in phosphorus removal from wastewater in urban WWTP. For wastewaters with low volatile fatty acids (VFAs) content, an external carbon addition is necessary. As methanol is the most commonly external carbon source used for denitrification it could be a priori a promising alternative, but previous attempts to use it for EBPR have failed. This study is the first successful report of methanol utilization as external carbon source for EBPR. Since a direct replacement strategy (i.e., supply of methanol as a sole carbon source to a propionic‐fed PAO‐enriched sludge) failed, a novel process was designed and implemented successfully: development of a consortium with anaerobic biomass and polyphosphate accumulating organisms (PAOs). Methanol‐degrading acetogens were (i) selected against other anaerobic methanol degraders from an anaerobic sludge; (ii) subjected to conventional EBPR conditions (anaerobic + aerobic); and (iii) bioaugmented with PAOs. EBPR with methanol as a sole carbon source was sustained in a mid‐term basis with this procedure. Biotechnol. Bioeng. 2013; 110: 391–400. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The performance of biological phosphorus removal (BPR) in a sequencing batch reactor (SBR) with single-stage oxic process was investigated using simulated municipal wastewater. The experimental results showed that BPR could be achieved in a SBR without anaerobic phase, which was conventionally considered as a key phase for BPR. Phosphorus (P) concentration 0.22–1.79 mg L−1 in effluent can be obtained after 4 h aeration when P concentration in influent was about 15–20 mg L−1, the dissolved oxygen (DO) was controlled at 3 ± 0.2 mg L−1 during aerobic phase and pH was maintained 7 ± 0.1, which indicated the efficiencies of P removal were achieved 90% above. Experimental results also showed that P was mainly stored in the form of intracellular storage of polyphosphate (poly-P), and about 207.235 mg phosphates have been removed by the discharge of rich-phosphorus sludge for each SBR cycle. However, the energy storage poly-β-hydroxyalkanoates (PHA) was almost kept constant at a low level (5–6 mg L−1) during the process. Those results showed that phosphate could be transformed to poly-P with single-stage oxic process without PHA accumulation, and BPR could be realized in net phosphate removal.  相似文献   

14.
增强型生物除磷过程中聚磷酸盐积累微生物的研究进展   总被引:10,自引:0,他引:10  
从磷污染控制、污水脱磷和磷资源角度论述了生物除磷的作用,并着重论述了增强型生物除磷过程中聚磷酸盐微生物(PAO)的研究历史、代谢特征及研究方法.聚磷酸盐广泛存在于自然界,但只有少数PAO微生物被分离、培养、鉴定出来.培养基能否分离出PAO和PAO能否在实验室条件下表现出polyP积累特征,均至关重要.糖原积累微生物(GAO)与PAO对碳源存在竞争关系,影响EBPR的效率.原位荧光分子杂交、激光共聚焦扫描电镜、微量放射自显影术、活体核磁共振光谱等现代科学技术的发展。使我们能够观察原位微生物群落组成、空间结构和功能变化.对PAO的深入研究,可改进污水脱磷的效率,提高对磷在环境中迁移转化的认识  相似文献   

15.
Nitrogen and phosphorus removal from wastewater is now considered essential for the protection of our waterways. Biological nutrient removal processes are generally the most efficient and cost-effective solution to achieve this. While the principles of these processes are well known, intriguing and useful details are being discovered with the recent advances in bio-process engineering and microbial sciences. Phosphorus accumulating organisms have only been identified in recent years, and there are now competing glycogen accumulating organisms being found in biological phosphorus removal systems. These can possibly explain the reasons for the variable phosphorus removal performance of certain systems, and their control can help in the development of more stable and better performing processes. Detailed investigations of the traditional nitrification-denitrification systems, but also of novel developments for nitrogen removal, reveal a more complex and diverse range of processes involved in these transformations. Increasingly, linked phosphorus and nitrogen removal processes are being developed, creating further opportunities to optimise the technologies. However, this might also bring certain risks such as the potential to produce the greenhouse-gas nitrous oxide (N2O) rather than nitrogen gas as the final denitrification product. A range of recent developments in these areas is covered in this paper.  相似文献   

16.
Bolier  G.  de Koningh  M. C. J.  Schmale  J. C.  Donze  M. 《Hydrobiologia》1992,(1):113-118
After a thirty-fold lowering of the orthophosphate concentration of the eutrophic River Meuse, the granular polyphosphate reserve of planktonic algae did not decrease significantly. Although the algal populations were clearly limited by phosphorus, individual cells stored phosphorus but did not use it to increase their biomass.  相似文献   

17.
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.  相似文献   

18.
Long-term influences of different steady-state pH conditions on microbial community composition were determined by fluorescence in situ hybridization (FISH) in a laboratory scale reactor configured for enhanced biological phosphorus removal (EBPR). Chemical profiles were consistent with shifts in populations from polyphosphate-accumulating organisms (PAO) to glycogen-accumulating organisms (GAO) when pH fell from pH 7.5 to 7.0 and then to 6.5. While biomass was both dispersed and flocculated at pH 7.5, almost complete granulation occurred gradually after pH was dropped to 7.0, and these granules increased in size as the pH was reduced further to 6.5. Reverting back to pH 7.5 led to granule breakdown and corresponding increases in anaerobic phosphate release. Granules consisted almost entirely of Accumulibacter PAO cells, while putative GAO populations were always present in small numbers. Results suggest that low pH may contribute to granulation under these operational conditions. While chemical profiles suggested the PAO:GAO balance was changing as pH fell, FISH failed to reveal any marked corresponding increase in GAO abundances. Instead, TEM evidence suggested the Accumulibacter PAO phenotype was becoming more like that of a GAO. These data show how metabolically adaptable the Accumulibacter PAO can be under anaerobic:aerobic conditions in being able to cope with marked changes in plant conditions. They suggest that decreases in EBPR capacity may not necessarily reflect shifts in community composition, but in the existing population metabolism.  相似文献   

19.
The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. We investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. We observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. From these observations, we postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimisation of EBPR. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 63: 507–515, 1999.  相似文献   

20.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号