首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the actions of receptor-activating peptide analogues (PAR4APs), modeled on the proteolytically-revealed tethered ligand sequence of murine proteinase-activated receptor-4 (PAR4), in a rat platelet aggregation assay. The PAR4APs GYPGKF-NH2 (GY-NH2) and AYPGKF-NH2 (AY-NH2) were able to cause aggregation with EC50 values of about 40 microM and 15 microM, respectively. The reverse human PAR4 sequence (VQGPYG-NH2, YG-NH2) and the PAR1AP SFLLR-NH2, did not cause aggregation. In contrast, trans-cinnamoyl-YPGKF-NH2 (tcY-NH2) did not cause aggregation but blocked aggregation caused by GY-NH2, AY-NH2, and thrombin without affecting ADP-mediated aggregation. We conclude that in contrast to the PAR1AP, the PAR4APs GY-NH2 and AY-NH2 activate rat platelets via a PAR4-related receptor and that peptide analogues modeled on the PAR4 tethered activating sequence can serve as useful agonist and antagonist probes for assessing the consequence of activating PAR4 either by PAR4APs or thrombin in rat tissue preparations.  相似文献   

2.
In canine coronary artery preparations, the proteinase-activated receptor-2 (PAR(2)) activating peptides (PAR(2)-APs) SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2) caused both an endothelium-dependent relaxation and an endothelium-independent contraction. Relaxation was caused at peptide concentrations 10-fold lower than those causing a contractile response. Although trans-cinnamoyl-LIGRLO-NH(2), like other PAR(2)-APs, caused relaxation, it was inactive as a contractile agonist and instead antagonized the contractile response to SLIGRL-NH(2). RT-PCR-based sequencing of canine PAR(2) revealed a cleavage/activation (indicated by underlines) sequence (SKGR/SLIGKTDSSLQITGKG) that is very similar to the human PAR(2) sequence (R/SLIGKV). As a synthetic peptide, the canine PAR-AP (SLIGKT-NH(2)) was a much less potent agonist than either SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2), either in the coronary contractile assay or in a Madin-Darby canine kidney (MDCK) cell PAR(2) calcium signaling assay. In the MDCK signaling assay, the order of potencies was as follows: 2-furoyl-LIGRLO-NH(2) > SLIGRL-NH(2) = trans-cinnamoyl-LIGRLO-NH(2) > SLIGKT-NH(2), as expected for PAR(2) responses. In the coronary contractile assay, however, the order of potencies was very different: SLIGRL-NH(2) > 2-furoyl-LIGRLO-NH(2) > SLIGKT-NH(2), trans-cinnamoyl-LIGRLO-NH(2) = antagonist. Because of 1) the distinct agonist (relaxant) and antagonist (contractile) activity of trans-cinnamoyl-LIGRLO-NH(2) in the canine coronary contractile assays, 2) the different concentration ranges over which the peptides caused either relaxation or contraction in the same coronary preparation, and 3) the markedly distinct structure-activity profiles for the PAR-APs in the coronary contractile assay, compared with those for PAR(2)-mediated MDCK cell calcium signaling, we suggest that the canine coronary tissue possesses a receptor system for the PAR-APs that is distinct from PAR(2) itself.  相似文献   

3.
We examined the effects of the tyrosine kinase (TK) inhibitors, genistein, and tyrphostin (RG-50864) on the contractile action of epidermal growth factor - urogastrone (EGF-URO), transforming growth factor-alpha (TGF-alpha), and other agonists in two smooth muscle bioassay systems (guinea pig gastric longitudinal muscle, LM, and circular muscle, CM). We also studied the inhibition by tyrphostin of EGF-URO stimulated protein phosphorylation in identical smooth muscle strips. The selective inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha induced contraction, but not of carbachol- and bradykinin-mediated contraction, occurred at much lower concentrations (genistein, less than 7.4 microM (2 micrograms/mL); tyrphostin, less than 20 microM (4 micrograms/mL)) than those used in previously published studies with these TK inhibitors. In LM tissue, the IC50 values were for genistein 1.1 +/- 0.1 microM (0.30 micrograms/mL; mean +/- SEM) and 3.6 +/- 0.5 microM (0.74 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS: TP) of 1:3 in the longitudinal preparation. In CM tissue, the IC50 values were 3.0 +/- 0.3 microM (0.81 micrograms/mL) for genistein and 2.4 +/- 0.2 microM (0.49 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS:TP) of 1.0:0.8 in the circular strips. The inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha mediated contraction was rapid (beginning within minutes) and was reversible upon washing the preparations free from the enzyme inhibitors. In intact tissue strips studied under bioassay conditions, tyrphostin (40 microM) also blocked EGF-URO triggered phosphorylation of substrates detected on Western blots using monoclonal antiphosphotyrosine antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Nieman MT  Schmaier AH 《Biochemistry》2007,46(29):8603-8610
Investigations determined the critical amino acids for alpha-thrombin's interaction with protease-activated receptors 1 and 4 (PAR1 and PAR4, respectively) at the thrombin cleavage site. Recombinant PAR1 wild-type (wt) exodomain was cleaved by alpha-thrombin with a Km of 28 microM, a kcat of 340 s-1, and a kcat/Km of 1.2 x 10(7). When the P4 or P2 position was mutated to alanine, PAR1-L38A or PAR1-P40A, respectively, the Km was unchanged, 29 or 23 microM, respectively; however, the kcat and kcat/Km were reduced in each case. In contrast, when Asp39 at P3 was mutated to alanine, PAR1-D39A, Km and kcat were both reduced approximately 3-fold, making the kcat/Km the same as that of PAR1-wt exodomain. Recombinant PAR4-wt exodomain was cleaved by alpha-thrombin with a Km of 61 microM, a kcat of 17 s-1, and a kcat/Km of 2.8 x 10(5). When the P5 or P4 position was mutated to alanine, PAR4-L43A or PAR4-P44A, respectively, there was no change in the Km (69 or 56 microM, respectively); however, the kcat was lowered in each case (9.7 or 7.7 s-1, respectively). Mutation of the P2 position (PAR4-P46A) also had no effect on the Km but markedly lowered the kcat and kcat/Km approximately 35-fold. PAR1-wt exodomain and P4 and P3 mutants were noncompetitive inhibitors of alpha-thrombin hydrolyzing Sar-Pro-Arg-pNA. However, PAR1-P40A displayed a mixed type of inhibition. Mutation of P4, P3, or P2 had no effect on the Ki. All PAR4 exodomains were competitive inhibitors of alpha-thrombin. Mutation of P5, P4, or P2 had no effect on the Ki. These investigations show that Leu at P4 in PAR1 or P5 in PAR4 critically influences the kinetics of alpha-thrombin binding and cleavage of PAR1 and PAR4 exodomains. It also implies that factors other than the hirudin-like binding region on PAR1 exodomain predominate in influencing PAR1 cleavage on cells.  相似文献   

5.
Protease-activated receptor 2 (PAR2) is a trypsin-activated member of a family of G-protein-coupled PARs. We have identified a polymorphic form of human PAR2 (PAR(2)F240S) characterized by a phenylalanine to serine mutation at residue 240 within extracellular loop 2, with allelic frequencies of 0.916 (Phe(240)) and 0.084 (Ser(240)) for the wild-type and mutant alleles, respectively. Elevations in intracellular calcium were measured in permanently transfected cell lines expressing the receptors. PAR(2)F240S displayed a significant reduction in sensitivity toward trypsin ( approximately 3.7-fold) and the PAR2-activating peptides, SLIGKV-NH(2) ( approximately 2.5-fold) and SLIGRL-NH(2) ( approximately 2.8-fold), but an increased sensitivity toward the selective PAR2 agonist, trans-cinnamoyl-LIGRLO-NH(2) ( approximately 4-fold). Increased sensitivity was also observed toward the selective PAR-1 agonist, TFLLR-NH(2) ( approximately 7-fold), but not to other PAR-1 agonists tested. Furthermore, we found that TLIGRL-NH(2) and a PAR4-derived peptide, trans-cinnamoyl-YPGKF-NH(2), were selective PAR(2)F240S agonists. By introducing the F240S mutation into rat PAR2, we observed shifts in agonist potencies that mirrored the human PAR(2)F240S, suggesting that Phe(240) is involved in determining agonist specificity of PAR2. Finally, differences in receptor signaling were paralleled in a cell growth assay. We suggest that the distinct pharmacological profile induced by this polymorphism will have important implications for the design of PAR-targeted agonists/antagonists and may contribute to, or be predictive of, an inflammatory disease.  相似文献   

6.
7.
This study investigated the presence and effects of calcitonin gene-related peptide (CGRP) within the rat and guinea-pig prostate glands. Immunohistochemical studies demonstrated that CGRP immunoreactive nerve fibres are sparsely distributed throughout the prostatic fibromuscular stroma in both species. These CGRP immunopositive nerve fibres shared a similar distribution profile but were not colocalized with tyrosine hydroxylase immunopositive nerve fibres which also innervate the prostatic stroma of these species. Nerve terminals within rat and guinea-pig prostatic tissues were electrically field stimulated (60 V, 0.5 ms, 10 Hz, 20 pulses every 60 s). In guinea-pig preparations, application of human alpha-CGRP, rat adrenomedullin or rat amylin (0.1 nM-1 microM) had no effect on responses to field stimulation. In contrast, both rat and human alpha-CGRP (10 pM-300 nM), rat adrenomedullin (0.3 nM-1 microM) and rat amylin (3 nM-1 microM) concentration-dependently inhibited electrically evoked contractile responses in the rat prostate. The relative order of potency was rat alpha-CGRP=human alpha-CGRP>rat adrenomedullin>rat amylin. The inhibition by rat alpha-CGRP of field stimulation-induced contractions in the rat prostate was competitively antagonized by human CGRP((8-37)) (1, 3 and 10 microM) with a pA(2) of 6.20+/-0.13. Rat alpha-CGRP (10 nM) attenuated contractile responses of the rat prostate to exogenously added noradrenaline (1-100 microM). Inhibitory concentration-response curves to rat alpha-CGRP in rat prostates were unaffected by preincubation in either glibenclamide (10-100 microM), N-nitro-L-arginine methyl ester (L-NAME) (10 microM), bestatin (10 microM), captopril (10 microM) or phosphoramidon (3 microM). Our results indicate that CGRP-induced inhibition of electrically evoked contractions in the rat prostate occurs through activation of postjunctional CGRP(2) receptors which act independently of a K(ATP) channel or nitrergic mechanisms. Degradation of rat alpha-CGRP via peptidases does not appear to occur in the rat prostate.  相似文献   

8.
Proteinase-activated receptor 2 (PAR2) has been suggested to play a role in inflammatory reactions. Because leukocyte-endothelial cell interactions are critical events during inflammatory reactions, and because PAR2 is expressed both on endothelium and leukocytes, we have examined the effects of PAR2-activating peptides (PAR2-APs) on leukocyte rolling and adhesion in mesenteric venules and on leukocyte recruitment into the peritoneal cavity. Using intravital microscopy, leukocyte rolling, flux, and adhesion in rat mesenteric postcapillary venules were quantified. Topical addition of PAR2-APs (10 microM) for 1 min to the superfused venule induced a significant increase in leukocyte rolling and adherence. The increase in leukocyte adherence was not affected by pretreatment with a mast cell stabilizer (sodium cromoglycate) nor by prior degranulation of mast cells with compound 48/80. Nonetheless, both leukocyte rolling and adhesion were completely inhibited by pretreatment with a platelet-activating factor receptor antagonist (WEB 2086). Intraperitoneal injections of a selective PAR2-AP (SLIGRL-NH2) caused a significant increase in leukocyte migration into the peritoneal cavity. The effect of SLIGRL-NH2 on peritoneal leukocyte infiltration was completely inhibited by WEB 2086. These data suggest that PAR2 activation could contribute to several early events in the inflammatory reaction, including leukocyte rolling, adherence, and recruitment, by a mechanism dependent on platelet-activating factor release.  相似文献   

9.
Anti-curare effect of plasma from patients with thermal injury   总被引:1,自引:0,他引:1  
Following severe thermal injury, patients are resistant to non-depolarizing muscle relaxants. Although this resistance has been well documented clinically, little is known about its etiology. We have tested the hypothesis that circulating factors contribute to the decreased potency of neuromuscular blockers following burns. The potencies of d-tubocurarine (2 microM) or pancuronium (2 microM) dissolved in plasma from either burned or control human subjects were tested on the indirectly stimulated (0.2 Hz) rat phrenic nerve-hemidiaphragm preparation. The muscle relaxants produced less neuromuscular blockade when dissolved in plasma from burned patients than when they were dissolved in plasma from controls. Thus, circulating factors are involved in the decreased potency of non-depolarizing neuromuscular blocking drugs.  相似文献   

10.
We have examined the action of the thrombin receptor-derived polypeptide, S42FLLRNPNDKYEPF55 (TRP 42-55), in rat and guinea pig aortic rings and helical arterial strips, and we have compared the actions of the peptide with those of thrombin. In rat preparations, both TRP 42-55 and thrombin caused a concentration-dependent endothelium-dependent relaxation that was blocked by N omega-nitro-L-arginine methyl ester; the relaxation response of the intact rat aortic strip preparation to concentrations of the peptide in the range 30-60 micrograms/mL (17-34 microM) was equivalent to the response to 0.03-0.1 U/mL of thrombin (about 0.3-0.9 nM), yielding a potency ratio (TRP 42-55:thrombin) of about 38,000:1. In contrast with the complete desensitization of thrombin-treated rat aortic preparations to a second administration of the enzyme, the rat aortic tissue was not desensitized by repeated exposures to TRP 42-55 and remained responsive to the peptide even after treatment of the tissue by thrombin. In contrast with the rat aortic tissue, in either intact or endothelium-free guinea pig aortic preparations both TRP 42-55 and thrombin caused a concentration-dependent endothelium-independent contraction. The contractile action of 60 micrograms/mL of receptor peptide (34 microM) in guinea pig aortic strip preparations was equivalent to the contractile action of 0.1-0.3 U/mL thrombin (0.9-3 nM), yielding a potency ratio of about 17,000:1. In guinea pig aortic preparations with an intact endothelium that were precontracted with noradrenaline, neither thrombin nor TRP42-55 caused relaxation, whereas substance P did so.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Serine proteinases like thrombin can signal to cells by the cleavage/activation of proteinase-activated receptors (PARs). Although thrombin is a recognized physiological activator of PAR(1) and PAR(4), the endogenous enzymes responsible for activating PAR(2) in settings other than the gastrointestinal system, where trypsin can activate PAR(2), are unknown. We tested the hypothesis that the human tissue kallikrein (hK) family of proteinases regulates PAR signaling by using the following: 1) a high pressure liquid chromatography (HPLC)-mass spectral analysis of the cleavage products yielded upon incubation of hK5, -6, and -14 with synthetic PAR N-terminal peptide sequences representing the cleavage/activation motifs of PAR(1), PAR(2), and PAR(4); 2) PAR-dependent calcium signaling responses in cells expressing PAR(1), PAR(2), and PAR(4) and in human platelets; 3) a vascular ring vasorelaxation assay; and 4) a PAR(4)-dependent rat and human platelet aggregation assay. We found that hK5, -6, and -14 all yielded PAR peptide cleavage sequences consistent with either receptor activation or inactivation/disarming. Furthermore, hK14 was able to activate PAR(1), PAR(2), and PAR(4) and to disarm/inhibit PAR(1). Although hK5 and -6 were also able to activate PAR(2), they failed to cause PAR(4)-dependent aggregation of rat and human platelets, although hK14 did. Furthermore, the relative potencies and maximum effects of hK14 and -6 to activate PAR(2)-mediated calcium signaling differed. Our data indicate that in physiological settings, hKs may represent important endogenous regulators of the PARs and that different hKs can have differential actions on PAR(1), PAR(2), and PAR(4).  相似文献   

12.
The neuronal growth associated protein B-50/GAP-43 has been localized in synaptosomes both as an intact protein and as a partial proteolysis product (termed B-60) that has an N-terminal sequence SFRGHITR.... Because of the relationship of this amino acid sequence to those of the tethered ligand for the human proteinase activated receptors PAR1 (SFLLRN...) and PAR2 (SLIGKV...), we wished to determine whether the B-50/GAP-43-derived proteolytic fragment SFRGHITR (SFR(B60)) might function as a PAR-activating peptide (PAR-AP) to stimulate either PAR1 or PAR2. With the use of a newly developed PAR1/PAR2 receptor activation-desensitization assay, employing PAR1/PAR2-bearing cultured human embryonic kidney (HEK293) cells, we found that SFR(B60) could activate both PAR1 and PAR2 so as to elevate intracellular calcium with EC50 values of approximately 200 and 50 microM, respectively. We also showed that trypsin can rapidly degrade B-50 to smaller fragments that would include the sequence SFR(B60). Because PAR1 and PAR2 are present on neurones, our data raise the possibility that in certain circumstances in vivo, B-50/GAP-43 may play a signalling role by serving as a precursor for proteolytically generated PAR-activating peptides.  相似文献   

13.
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.  相似文献   

14.
PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both G(α12/13) and G(αq) signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca2? mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y?? receptor-induced G(αi) signalling accounted for the loss of the aggregation response, as mimicking G(αi/z) signalling with 2-MeS-ADP (2-methylthioadenosine-5'-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.  相似文献   

15.
Covic L  Gresser AL  Kuliopulos A 《Biochemistry》2000,39(18):5458-5467
Thrombin activates platelets in an ordered sequence of events that includes shape change, increase in cytoplasmic Ca(2+), activation of the alphaIIbbeta3 integrin, granule secretion, aggregation, and formation of a stable hemostatic plug. Activation of this process has also been implicated in the pathogenesis of atherosclerosis, stroke, and thrombosis. There are two identified thrombin-activated receptors on the surface of human platelets. PAR1 is a high-affinity thrombin receptor, and PAR4 is a low apparent affinity thrombin receptor of uncertain function. The goal of these studies is to determine the kinetics of thrombin activation of PAR1 and PAR4 and to relate the individual inputs from each receptor to platelet Ca(2+) signaling, secondary autocrine stimulation, and aggregation. Using a combination of PAR-specific peptide ligands and anti-PAR1 reagents, we separated the biphasic thrombin Ca(2+) response of platelets into two discrete components-a rapid spike response caused by PAR1, followed by a slower prolonged response from PAR4. Despite having a 20-70-fold slower rate of activation, PAR4 produces the majority of the integrated Ca(2+) signal that is sustained by the continuous presence of catalytically active thrombin. Surprisingly, PAR4 activation is much more effective than PAR1 activation in mounting secondary autocrine Ca(2+) signals from secreted ADP. The strong ADP response due to activated PAR4, however, requires prior activation of PAR1 as would normally occur during treatment of platelets with thrombin. Thus, the late signal generated by activated PAR4 is not redundant with the early signal from PAR1 and instead serves to greatly extend the high intracellular Ca(2+) levels that support the late phase of the platelet aggregation process.  相似文献   

16.
The synthesis of N-substituted piperidine-4-(benzylidene-4-carboxylic acids) is described [benzoyl (1), benzyl (2), adamantanoyl (3), cyclohexanoyl (4), cyclohexylacetyl (5), diphenylacetyl (6), dicyclohexylacetyl (7), 2-propylpentanoyl (8), diphenylcarbamoyl (9), trimethylacetyl (10), 3,3-dimethylacryloyl (11), dicyclohexylacetyl derivative of the benzyl compound (12)]. Compounds were tested for inhibitory activity toward 5alpha-reductase isozymes 1 and 2 in human and rat. The test compounds inhibited 5alpha-reductase, showing a broad range of inhibitory potencies. In rat, compounds 6 (IC50 = 3.44 and 0.37 microM for type 1 and 2, respectively) and 9 (IC50=0.54 and 0.69 microM for type 1 and 2, respectively) displayed the best inhibition toward both isozymes. Compound 7 showed a strong inhibition toward type 2 human and rat enzyme (IC50 = 60 and 80 nM) but only a moderate activity versus type 1 enzyme (IC50 approximately 10 microM for rat and human enzyme). In vivo, selected compounds reduced prostate weights in castrated testosterone treated rats.  相似文献   

17.
Huang SC 《Regulatory peptides》2007,142(1-2):37-43
Protease-activated receptor-1 (PAR1), PAR2 and PAR4 activation can alter the gastrointestinal motility. To investigate effects mediated by PARs in the lower esophageal sphincter, we measured contraction or relaxation of transverse strips from the guinea-pig lower esophageal sphincter caused by PAR1 (TFLLR-NH2 and SFLLRN-NH2), PAR2 (SLIGKV-NH2 and SLIGRL-NH2) and PAR4 peptide agonists (GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2) as well as PAR protease activators (thrombin and trypsin). In resting lower esophageal sphincter strips, TFLLR-NH2 and SFLLRN-NH2 caused moderate concentration-dependent relaxation whereas thrombin did not cause any relaxation or contraction. Furthermore, in carbachol-contracted strips, TFLLR-NH2 and SFLLRN-NH2 caused marked whereas thrombin caused mild concentration-dependent relaxation. These indicate the existence of PAR1 mediating relaxation. Similarly, in resting lower esophageal sphincter strips, trypsin caused moderate concentration-dependent relaxation whereas SLIGRL-NH2 and SLIGKV-NH2 did not cause any relaxation or contraction. In addition, in carbachol-contracted strips, trypsin caused marked whereas SLIGRL-NH2 and SLIGKV-NH2 caused mild concentration-dependent relaxation. These indicate the existence of PAR2 mediating relaxation. The relaxant response of thrombin, TFLLR-NH2, trypsin and SLIGKV-NH2 was insensitive to atropine or tetrodotoxin, suggesting a direct effect. The relaxant response of trypsin was not affected by apamin, charybdotoxin, indomethacin and capsaicin but was attenuated by NG-nitro-L-arginine methyl ester, indicating involvement of NO. FSLLR-NH2, a PAR1 control peptide, and VKGILS-NH2, a PAR2 control peptide, as well as all three PAR4 peptide agonists, GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2, did not cause any relaxation or contraction. Taken together, these results demonstrate that PAR1 and PAR2 but not PAR4 mediate relaxations in the guinea-pig lower esophageal sphincter.  相似文献   

18.

Background  

The proteinase-activated receptor 4 (PAR4) is a G-protein-coupled receptor activated by proteases such as thrombin and trypsin. Although activation of PAR4 has been shown to modulate rat gastrointestinal motility, the rat PAR4 sequence was unknown until now. This study aimed to identify the rat PAR4 cDNA.  相似文献   

19.
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.  相似文献   

20.
Receptors for galanin in membranes from the rat gastric and jejunal smooth muscle were studied using [125I] radioiodinated synthetic porcine galanin. Specific binding was time and temperature dependent. At 32 degrees C radioligand was degraded in the presence of smooth muscle membranes in a time-dependent manner. At optimal experimental conditions, the equilibrium binding analyses showed the presence of a single population of high affinity binding sites in both the rat stomach and jejunum (Kd value of 2.77 +/- 0.78 nM and 4.93 +/- 1.74 nM for stomach and jejunal smooth muscle membranes, respectively). The concentration of the high affinity binding sites was 58.19 +/- 11.04 and 32.36 +/- 5.68 fmol/mg protein, for gastric and jejunal preparations, respectively. Specific binding was completely inhibited by 10(-6) M of nonradioactive galanin; was 75% blocked by 1 microM of galanin(9-29); it was 10% blocked by 1 microM of galanin(15-29). Galanin(1-15) at a concentration of 1 microM was ineffective for inhibiting [125I]galanin binding. Deletion of four C-terminal amino acid residues from galanin(9-29) to give galanin(9-25) also resulted in almost complete loss of affinity. Radioiodinated galanin and N-terminally deleted fragments had receptor binding potency in the following order: galanin(1-29) greater than galanin(9-29) greater than galanin(15-29). We conclude that the C-terminal part of the galanin chain is important for the rat gastric and jejunal smooth muscle membrane receptor recognition and binding and that N-terminal amino acid sequences are probably not so important, since galanin(1-15) was not active but galanin(9-29) retained most of the receptor binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号