首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.  相似文献   

2.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP cyclic AMP receptor protein - NATA N-acetyltryptophanamide - FQRS fluorescence-quenching-resolved spectra - FDCD fluorescence-detected circular dichroism - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - FPLC fast protein liquid chromatography  相似文献   

3.
We examined the frequency-domain intensity decays of the intrinsic tryptophan fluorescence (Trp-59) from ribonuclease T1 (EC 3.1.27.3) (RNAase T1). At pH 5.5 in the native state (below 30 degrees C), the intensity decay of the single tryptophan residue is a single-exponential process. Conditions which result in protein unfolding were found to induce more complex intensity decays. At temperatures above 40 degrees C, or in the presence of guanidine hydrochloride, the intensity decays became obviously double exponential. In general, the main effect of temperature or guanidine was to induce a second subnanosecond component in the intensity decay. The increased complexity of the decays could not be explained by a unimodal distribution of decay times. These results indicate that conformational dispersion of protein structure can be one origin of the multi-exponential decays which are generally observed for protein fluorescence.  相似文献   

4.
Mutants of the Tn10-encoded Tet repressor containing single or no tryptophan residues were constructed by oligonucleotide-directed mutagenesis. The Trp-75 to Phe exchange reduces the dissociation rate of the complex with the inducer tetracycline by a factor of 2. The Trp-43 to Phe exchange has no effect on inducer binding. The fluorescence emission spectra of both tryptophan residues are quenched to a different extent by binding of tetracycline: Trp-75 is quenched to zero and Trp-43 to only 50%. It is concluded that Trp-75 is in the vicinity of the inducer binding site. The different fluorescence emission spectra of both tryptophan residues depend on the native structure of Tet repressor. Quenching studies with iodide indicate that the DNA binding motif is solvent exposed in free repressor and moves towards the interior of the protein upon inducer binding. The inducer binding site is in the interior of the protein. The fluorescence of tetracycline is enhanced upon binding to Tet repressor. The excitation at 280 nm results mainly from the change in environment and in part from energy transfer from tryptophan to the drug.  相似文献   

5.
Several metmyoglobins (red kangaroo, horse and sperm whale), containing different numbers of tyrosines, but with invariant tryptophan residues (Trp-7, Trp-14), exhibit intrinsic fluorescence when studied by steady-state front-face fluorometry. The increasing tyrosine content of these myoglobins correlates with a shift in emission maximum to shorter wavelengths with excitation at 280 nm: red kangaroo (Tyr-146) emission maximum 335 nm; horse (Tyr-103, -146) emission maximum 333 nm; sperm whale (Tyr-103, -146, -151) emission maximum 331 nm. Since 280 nm excites both tyrosine and tryptophan, this strongly suggests that tyrosine emission is not completely quenched but also contributes to this fluorescence emission. Upon titration to pH 12.5, there is a reversible shift of the emission maximum to longer wavelengths with an increase greater than 2-fold in fluorescence intensity. With excitation at 305 nm, a tyrosinate-like emission is detected at a pH greater than 12. These studies show that: (1) metmyoglobins, Class B proteins containing both tyrosine and tryptophan residues, exhibit intrinsic fluorescence; (2) tyrosine residues also contribute to the observed steady-state fluorescence emission when excited by light at 280 nm; (3) the ionization of Tyr-146 is likely coupled to protein unfolding.  相似文献   

6.
The tryptophan intrinsic fluorescence of mitochondrial complex III reconstituted in phosphatidylcholine bilayers was examined at different temperatures. Absorption and emission maxima occur at 277 and 332 nm, irrespective of temperature or lipid:protein ratio even if there are indications (from fluorescence quenching) of protein conformational changes as a function of lipid:protein ratio. Low values of Trp fluorescence quantum yield in complex III (0.008-0.010) are probably due to the neighborhood of the heme groups. The temperature-dependent decrease of fluorescence intensity is nonlinear; the corresponding Arrhenius plots show "breaks" or discontinuities that could be interpreted as thermally dependent changes in protein conformation. However, no temperature-dependent changes in fluorescence quenching have been observed that may be related to protein conformational changes. In addition, Arrhenius plots of the fluorescence intensity of simple molecules, such as Trp or 1-anilino-8-naphthalene sulfonate in the presence of aqueous phospholipid dispersions, also show breaks in the same temperature range. Stern-Volmer plots of acrylamide and iodide quenching were also nonlinear, indicating large differences in quenching constants for the various tryptophanyl residues. The quenching results also suggest that, at high lipid:protein ratios, the microviscosity of the protein matrix is higher than that in lipid-poor systems. Comparison of quenching efficiencies of iodide and acrylamide suggest that no significant fraction of the fluorophores occurs in the neighborhood of charged residues.  相似文献   

7.
Site specific spectroscopic techniques and differential scanning calorimetry were used to study human serum albumin (HSA) in the absence and in the presence of membranes composed of dipalmitoylphosphatidylcholine (DPPC) and poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Electron spin resonance (ESR) of a maleimide spin-label (5-MSL) covalently bound to the free sulfhydryl group at the unique cystein Cys-34 in domain I, intrinsic fluorescence of the single tryptophan Trp-214 in domain II, and extrinsic fluorescence of p-nitrophenyl anthranilate conjugated with tyrosine Tyr-411 in domain III were employed to study HSA dispersions with or without polymer-grafted membranes. On adsorbing at the DPPC membrane surfaces, domain I assumes a more loosened conformation and partitioning of the spin-labelled protein between the aqueous phase and the interfacial region of lipid membranes is observed by ESR. Domain II and III undergo a local structural arrangement which leads Trp-214 and Tyr-411 to come closer and causes intrinsic fluorescence quenching. The influence of DPPC bilayers on HSA is characterized both by a decrease of the thermal unfolding enthalpy and by a slight increase of the transition temperature, T (t), of the protein. The lipid induced effects on HSA are progressively reduced on increasing the amounts of PEG:2000-DPPE mixed with DPPC from the mushroom regime to the brush regime. Primary protein adsorption at the lipid surfaces is abolished at 1 mol% of the polymer-lipid, whereas the secondary protein adsorption at the polymer-brush leads to a further increase of both transition enthalpy and T (t) relative to the case of aqueous dispersions of HSA alone.  相似文献   

8.
S Y Mao  A H Maki 《Biochemistry》1987,26(12):3576-3582
The binding of free fatty acid to bovine serum albumin (BSA) and human serum albumin (HSA) was studied by phosphorescence and optical detection of triplet-state magnetic resonance spectroscopy in zero applied magnetic field. We have found that oleic acid perturbs the excited triplet state of Trp-134 but not that of Trp-212 in BSA. The assignment is made by comparing the BSA results with those obtained from oleic acid binding to HSA. The phosphorescence 0,0 band as well as the zero-field splittings of Trp-134 undergoes significant changes upon binding of oleic acid to BSA. Shifts of the 0,0-band wavelength and of the zero-field splittings point to large changes in the Trp-134 local environment which accompany the complex formation. The shifts are progressive until 3-4 mol of oleic acid is added. The spectroscopic changes may be attributed to Stark effects caused by a protein conformational change near Trp-134 in the BSA-oleate complex. Oleic acid binding has a minimal effect on the triplet-state properties of the single Trp-214 of HSA. The binding specificity with regard to chain length and unsaturation is reflected by the differences in the Trp environment when BSA forms complexes with various fatty acids.  相似文献   

9.
alpha-Sarcin, a potent cytotoxic protein from Aspergillus giganteus, contains two tryptophan residues at positions 4 and 51. Two single, W4F and W51F, and the double mutant, W4/51F, have been produced and purified to homogeneity. These two residues are neither required for the highly specific ribonucleolytic activity of the protein on the ribosomes (production of the so called alpha-fragment) nor for its interaction with lipid membranes (aggregation and fusion of vesicles), although the mutant forms involving Trp-51 show a decreased ribonuclease activity. Proton NMR data reveal that no significant changes in the global structure of the enzyme occur upon replacement of Trp-51 by Phe. Substitution of each Trp residue results in a 4 degrees C drop in the thermal denaturation midpoint, and the double mutant's midpoint is 9 degrees C lower. Trp-51 is responsible for most of the near-UV circular dichroism of the protein and also contributes to the overall ellipticity of the protein in the peptide bond region. Trp-51 does not show fluorescence emission. The membrane-bound proteins undergo a thermal denaturation at a lower temperature than the corresponding free forms. The interaction of the protein with phospholipid bilayers promotes a large increase of the quantum yield of Trp-51 and its fluorescence emission is quenched by anthracene incorporated into the hydrophobic region of such bilayers. This indicates that the region around this residue is located in the hydrophobic core of the bilayer following protein-vesicle interaction.  相似文献   

10.
Proteins required for peroxisome biogenesis are termed peroxins. The peroxin Pex3p is a peroxisomal membrane protein (PMP), involved in peroxisomal membrane biogenesis. It acts as a docking receptor for another peroxin Pex19p, which is a specific carrier protein for newly synthesized PMPs. Here we have determined the physicochemical properties and binding manners of Pex3p-Pex19p interaction, in terms of the affinity, the stoichiometry, and the binding site in Pex3p. The cytosolic domain of human Pex3p was overproduced, using an Escherichia coli expression system and was highly purified by two chromatography steps. Gel filtration chromatography analyses and intrinsic tryptophan fluorescence titrations revealed that a one-to-one complex is formed between monomeric Pex3p and monomeric Pex19p. The tryptophan fluorescence spectrum of Pex3p showed a large 18-nm blue shift of the maximum emission wavelength by the binding of Pex19p. This result indicates that either one or two tryptophan residues of Pex3p (Trp-104 and Trp-224) are directly involved in binding to Pex19p. We investigated the binding activities of the wild-type and tryptophan mutants of Pex3p by pull-down assays and surface plasmon resonance analyses. As a result, the wild-type and the W104A and W104F mutants showed K(D) values of 3.4 nm, 1080 nm, and 66.2 nm, respectively. The affinity differences with mutation affected their peroxisome restoring activities in pex3 ZPG208 cells. These findings suggest that the indole ring of Trp-104 directly interacts with Pex19p to facilitate the specific peroxisomal translocation of the Pex19p-PMP complexes.  相似文献   

11.
J Ellis  I A Murray  W V Shaw 《Biochemistry》1991,30(44):10799-10805
Replacement by tyrosine or phenylalanine was used to assign the additive contributions of each of the three tryptophan residues of chloramphenicol acetyltransferase (CAT) to its intrinsic fluorescence on excitation at 295 nm. During the assessment of the fluorescence responses of the wild-type enzyme to the binding of ligands, it was found that the overlapping absorption spectra of chloramphenicol and tryptophan, with an attendant inner filter effect, required the use of a displacement technique involving an alternative substrate (the p-cyano analogue of chloramphenicol) without significant absorption at 295 nm. By the use of two-Trp, one-Trp, and Trp-less variants, in combination with this displacement technique, it was possible to demonstrate that Trp-86 and Trp-152 are involved in the fluorescence quenching associated with the binding of chloramphenicol, most likely via nonradiative energy transfer from these residues to the bound substrate. Trp-152 is mainly responsible for the fluorescence enhancement accompanying the binding of acetyl-CoA (and CoA) through proximity effects and solvent exclusion on substrate association.  相似文献   

12.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

13.
It is shown by the fluorimetric analysis that with the 1,2 M MgCl2-induced dissociation of rabbit muscle aldolase the tertiary structure of the resulted protomers (subunits) remains practically unchanged. Significant changes in the protomeric enzyme are provoked by subsequent addition of urea up to the concentration of 2,3 M, and are, evidently, manifested in a significant decrease in regularity of the hydrophobic part of aldolase and in possible transition of its Trp-147 into more polar environment. This transition is reflected in the longwave shift of the protein fluorescence maximum (lambda max) by 13 nm (from 320 to 333 nm). But the joint action of MgCl2 and urea does not lead to complete unfolding of the resulted protomeric enzyme. More deep structural alterations in the subunits occur on acidic dissociation, and lambda max shift in this case reaches 342 nm. Structural changes caused by MgCl2 and urea are concomitant with the increase of fluorescence quenchibility with NADH. Here a short-wave lambda max shift, being usually observed in native aldolase fluorescence quenching, is not registered. This mean that the photoselection of protein fluorophores does not occur. The results thus obtained produce an evidence that oligomerization endows aldolase protomers with enhanced stability.  相似文献   

14.
The fluorescence behavior of two tryptophans (Trp-134, Trp-213) in bovine serum albumin (BSA) and a single tryptophan (Trp-214) in human serum albumin (HSA) was examined. The maximum emission wavelength (max) was 340.0 nm for both proteins. In a solution of sodium dodecyl sulfate (SDS), the max of BSA abruptly shifted to 332 nm at 1 mM SDS and then reversed to 334 nm at 3 mM SDS. The max of HSA gradually shifted to 330 nm below 3 mM SDS, although it returned to 338 nm at 10 mM SDS. In contrast to this, in a solution of dodecyltrimethylammonium bromide, the max positions of BSA and HSA gradually shifted to 334.0 and 331.5 nm, respectively. Differences in the fluorescence behavior of the proteins are attributed to the fact that Trp-134 exists only in BSA, with the assumption that Trp-213 of BSA behaves the same as Trp-214 of HSA. The Trp-134 behavior appears to relate to the disruption of the helical structure in the SDS solution.  相似文献   

15.
Single tryptophan-containing mutants of low adenylylation state Escherichia coli glutamine synthetase have been studied by frequency-domain fluorescence spectroscopy in the presence of various substrates and inhibitors. At pH 6.5, the Mn-bound wild-type enzyme (wild type has two tryptophans/subunit) and the mutant enzymes exhibit heterogeneous fluorescence decay kinetics; the individual tryptophans are adequately described by a triple exponential decay scheme. The recovered lifetime values are 5.9 ns, 2.6 ns, and 0.4 ns for Trp-57 and 5.8 ns, 2.3 ns, and 0.4 ns for Trp-158. These values are nearly identical to the previously reported results at pH 7.5 (Atkins, W.M., Stayton, P.S., & Villafranca, J.J., 1991, Biochemistry 30, 3406-3416). In addition, Trp-57 and Trp-158 both exhibit an ATP-induced increase in the relative fraction of the long lifetime component, whereas only Trp-57 is affected by this ligand at pH 7.5. The transition-state analogue L-methionine-(R,S)-sulfoximine (MSOX) causes a dramatic increase in the fractional intensity of the long lifetime component of Trp-158. This ligand has no effect on the W158S mutant protein and causes a small increase in the fractional intensity of the long lifetime component of the W158F mutant protein. Addition of glutamate to the ATP complex, which affords the gamma-glutamylphosphate-ADP complex, results in the presence of new lifetime components at 7, 3.2, and 0.5 ns for Trp-158, but has no effect on Trp-57. Similar results were obtained when ATP was added to the MSOX complex; Trp-57 exhibits heterogeneous fluorescence decay with lifetimes of 7, 3.5, and 0.8 ns. Decay kinetics of Trp-158 are best fit to a nearly homogeneous decay with a lifetime of 5.5 ns in the MSOX-ATP inactivated complex. These results provide a model for the sequence of structural and dynamic changes that take place at the Trp-57 loop and the central loop (Trp-158) during several intermediate stages of catalysis.  相似文献   

16.
beta 1-Bungarotoxin has only one tryptophan residue, namely Trp-19 in the phospholipase A2 subunit. The environment of Trp-19 was studied by intrinsic fluorescence and solute quenching. The native protein showed an emission peak at 330 nm. About 90% of the fluorescent tryptophan was accessible to quenching by either acrylamide or KI but not to CsCl. A red-shift in the emission peak occurred between 2.0 M- and 4.0 M-guanidinium chloride, and the helix-coil transition of the polypeptide backbone occurred between 4.0 M- and 6.0 M-guanidinium chloride. These results suggested that Trp-19 was in a less polar medium but near a positive charge. The local conformation around Trp-19 could be disturbed by binding of Tb3+ or Ca2+ or Sr2+ to the toxin molecule. Tb3+ a tervalent lanthanide ion, effectively substituted for Ca2+ in stimulating the phospholipase A2 activity of beta 1-bungarotoxin. Upon the binding of Tb3+ to the toxin, the Tb3+ fluorescence in the 450-650 nm region was enhanced. This resulted from the energy transfer from Trp-19 to Tb3+. The distance between the energy-transfer pair was estimated to be 0.376-0.473 nm at pH 7.6 and 0.486-0.609 nm at pH 6.3. Assuming that there were two Tb3+-binding sites on the toxin molecule, at pH 7.6 the association constants of the high-affinity and the low-affinity sites were determined to be 3.82 x 10(3) M-1 and 2.85 x 10(2) M-1 respectively. At between pH 6.0 and 7.0 Tb3+ bound to the high-affinity site decreased greatly but did not disappear entirely. Both Ca2+ and Sr2+ competed with Tb3+ at the high-affinity sites, but Sr2+ could not substitute for Ca2+ in stimulating the phospholipase A2 activity.  相似文献   

17.
Previous studies [Wasylewskiet al. (1996),J. Protein Chem. 15, 45–58] have shown that the W43 residue localized within the helix-turn-helix structure domain of Tet repressor can exist in the ground state in two conformational states. In this paper we investigate the fluorescence properties of W43 of TetR upon binding of tetracycline inducer and its chemical analogs such as anhydro- and epitetracycline. Binding of the drug inducer to the protein indicates that the W43 residue still exists in two conformational states; however, its environment changes drastically, as can be judged by the changes in fluorescence parameters. The FQRS (fluorescence-quenching-resolved spectra) method was used to decompose the total emission spectrum. The resolved spectra exhibit maxima of fluorescence at 346 and 332 nm and the component quenchable by KI (346 nm) is shifted 9 nm toward the blue side of the spectrum upon inducer binding. The observed shift does not result from the changes in the exposure of W43, since the bimolecular quenching rate constant remains the same and is equal to about 2.7×109M–1sec–1. The binding of tetracycline leads to drastic decrease of the W43 fluorescence intensity and increase of the tetracycline intensity as well as the decrease of fluorescence lifetime, especially of the W43 component characterized by the emission at 332 nm. The observed energy transfer from W43 to tetracycline is more efficient for the state characterized by the fluorescence emission at 332 nm (88%) than for the component quenchable by iodide (53%) Tetracycline and several of its derivatives were also used to observe how chemical modifications of the hydrophilic groups in tetracycline influence the mechanism of binding of the antibiotic to Tet repressor. By use of pulsed-laser photoacoustic spectroscopy it is shown that the binding of tetracyclines to Tet repressor leads to significant increase of tetracycline fluorescence quantum yields. Steady-state fluorescence quenching of tetracycline analogs in complexes with Tet repressor using potassium iodide as a quencher allowed us to determine the dependence of the exposure of bound antibiotic on the modifications of hydrophilic substituents of tetracycline. Circular dichroism studies of the TetR-[Mg · tc]+ complex do not indicate dramatic changes in the secondary structure of the protein; however, the observed small decrease in the TetR helicity may occur due to partial unfolding of the DNA recognition helix of the protein. The observed changes may play an important role in the process of induction in which tetracycline binding results in the loss of specific DNA binding.Abbreviations FQRS fluorescence-quenching-resolved spectra - HTH helix-turn-helix motif - tc tetracycline - TetR tetracycline repressor from Escherichia coli - TetR WT wild-type TetR - TetR W43 single point mutant with phenylalanine substituted for tryptophan at position 75 in both subunits  相似文献   

18.
The extent of fluorescence quenching and that of phosphorescence quenching of Trp-15 and Trp-314 in alcohol dehydrogenase from horse liver as well as the intrinsic phosphorescence lifetime of Trp-314 in fluid solution have been utilized as structural probes of the macromolecule in binary and ternary complexes formed with coenzyme, analogous, and various substrate/inhibitors. Luminescence quenching by the coenzyme reveals that (1) while the reduced form quenches Trp emission exclusively from the fluorescent state, the oxidized form is very effective on the phosphorescent state as well and that (2) among the series of NADH binary and ternary complexes known by crystallographic studies to attain the closed form, distinct nicotinamide/indole geometrical arrangements are inferred from a variable degree of fluorescence quenching. Information of the dynamic structure of the coenzyme-binding domain derived from the phosphorescence lifetime of Trp-314 points out that within the series of closed NADH complexes there is considerable conformational heterogeneity. In solution, the variability in dynamical structure among the various protein complexes emphasizes that the closed/open forms identified by crystallographic studies are not two well-defined macrostates of the enzyme.  相似文献   

19.
G Desie  N Boens  F C De Schryver 《Biochemistry》1986,25(25):8301-8308
The tryptophan environments in crystalline alpha-chymotrypsin were investigated by fluorescence. The heterogeneous emission from this multitryptophan enzyme was resolved by time-correlated fluorescence spectroscopy. The fluorescence decays at 296-nm laser excitation and various emission wavelengths could be characterized by a triple-exponential function with decay times tau 1 = 150 +/- 50 ps, tau 2 = 1.45 +/- 0.25 ns, and tau 3 = 4.2 +/- 0.4 ns. The corresponding decay-associated emission spectra of the three components had maxima at about 325, 332, and 343 nm. The three decay components in this enzyme can be correlated with X-ray crystallographic data [Birktoft, J.J., & Blow, D.M. (1972) J. Mol. Biol. 68, 187-240]. Inter- and intramolecular tryptophan-tryptophan energy-transfer efficiencies in crystalline alpha-chymotrypsin were computed from the accurately known positions and orientations of all tryptophan residues. These calculations indicate that the three fluorescence decay components in crystalline alpha-chymotrypsin can be assigned to three distinct classes of tryptophyl residues. Because of the different proximity of tryptophan residues to neighboring internal quenching groups, the decay times of the three classes are different. Decay tau 1 can be assigned to Trp-172 and Trp-215 and tau 2 to Trp-51 and Trp-237, while the tryptophyl residues 27, 29, 141, and 207 all have decay time tau 3.  相似文献   

20.
The structure of the rhodanese-tetracyanonickelate (E X Ni(CN)2-4) complex has been characterized here in spectral and physical studies using urea as a structural perturbant. UV difference absorption, sedimentation velocity ultracentrifugation, fluorescence, and circular dichroism data show no significant conformational differences between sulfur-free rhodanese (E) and the E X Ni(CN)2-4 complex. The urea-induced enzyme structural transition curves were noncoincident when different structural parameters were monitored. For E, the urea concentrations giving half-maximal change (Cm) were: Cm = 3.0 M for activity measurement; Cm = 2.8 M for protein intrinsic fluorescence intensity; Cm = 4.3 M for ellipticity at 220 nm; and Cm = 3.3 M for wavelength of fluorescence emission maximum. For the E X Ni(CN)2-4 complex, Cm was shifted to a higher urea concentration relative to that found for E when activity (Cm = 3.6 M) and native protein fluorescence (Cm = 3.6 M) were the measured parameters but not when the wavelength of the emission maximum and ellipticity were monitored. Furthermore, urea-induced rhodanese structural changes were time-dependent and Ni(CN)2-4 binding on E slowed enzyme inactivation that is associated with structural relaxations. These findings, that Ni(CN)2-4 affects structural relaxations in rhodanese, are of particular interest in light of the recent suggestion that the E X Ni(CN)2-4 complex mimics a normally inaccessible intermediate in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号