首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the effect of dietary vitamin E level and basal diet on vitamin E status, performance and tissue fatty acid content, five groups of eight Suffolk × Charollais wether lambs with an initial live weight of 28.4 (s.d. 1.6) kg were allocated to one of five concentrate-based diets supplemented with all-rac-α-tocopheryl acetate to contain 30 mg (C-30), 60 mg (C-60), 120 mg (C-120), 250 mg (C-250) or 500 mg (C-500) α-tocopheryl acetate/kg dry matter (DM), for 63 days. Two additional groups of eight lambs entered the study at 31.2 (s.d. 3.3) kg and were fed grass silage and 400 g/day concentrate for 56 days, with the whole diet providing the equivalent of 60 mg (S-60) or 500 mg (S-500) α-tocopheryl acetate/kg DM. Lambs were weighed and blood samples obtained by venipuncture weekly. Dietary vitamin E level did not affect performance (P > 0.05), but lambs fed grass silage grew more slowly (P < 0.001) and had a higher (P < 0.001) feed conversion ratio (kg feed/kg gain) than those fed concentrates. At day 0 plasma α-tocopherol concentrations were 0.8 μg/ml and did not differ between treatments (P > 0.05). Plasma α-tocopherol concentrations then decreased in all lambs except for those fed S-500, which increased, and at slaughter were (μg/ml) 0.07, 0.23, 0.39, 0.76 and 1.57 in C-30, C-60, C-120, C-250 and C-500 and 1.18 and 1.93 in S-60 and S-500, respectively. At slaughter, muscle and liver α-tocopherol concentrations were in the deficiency range for lambs fed C-30, C-60 or C-120, whereas plasma creatine kinase and tissue polyunsaturated fatty acids were unaffected by dietary vitamin E level, but creatine kinase levels were higher (P < 0.05) and glutathione peroxidise levels lower (P < 0.001) in lambs fed grass silage than concentrates alone. Muscle and liver α-tocopherol concentrations were 1.8- and 4.1-fold higher in lambs fed S-60 than C-60, but there was less of a difference between lambs fed S-500 or C-500 with muscle and liver differences of 0.4- and 0.7-fold, respectively. Tissue n-3 polyunsaturated fatty acid concentrations were higher (P < 0.05) and n-6 fatty acids lower in lambs receiving the grass silage compared to concentrate-based diets, but were not affected by dietary vitamin E level. It is concluded that lower plasma and tissue levels of α-tocopherol are present in lambs supplemented with all-rac-α-tocopheryl acetate on a concentrate compared to a mixed diet of silage and concentrates, and that normal growth can be achieved at tissue levels previously considered to represent deficiency.  相似文献   

2.
The effects of vitamin E (alpha-tocopherol) and its model compounds on the fluidity of liposomes composed of dipalmitoylphosphatidylcholin (DPPC) and fatty acids were investigated by the measurement of the fluorescent polarization (P) using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a plobe. Although all tocopherols decreased the fluidity of liposomes which was perturbed by the inclusion of an unsaturated fatty acid having more than one double bond, alpha-tocopherol was more effective than the others. The fluidity in arachidonic acid-containing liposomes was decreased most in the presence of alpha-tocopherol and was decreased considerably by the inclusion of model compounds having a side chain at least one isoprene unit or a long straight chain instead of isoprenoid side chain. However, the chromanol with methyl group instead of the above side chain, and phytol, having no chromanol moiety, had no effect. These results show that a structural requirement for a membrane stabilization is to be either the chromanol moiety with methyl groups born on its aromatic ring or a side chain of appropriate length; an isoprenoid side chain of full length or one containing 4'a- and 8'a-methyl groups is not necessarily needed.  相似文献   

3.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

4.
Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their sidechain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for detecting and quantifying vitamin E and its metabolites are crucial. The latest methods in analytics are presented.  相似文献   

5.
The fatty acid composition of retinal tissues was measured in rats maintained for 26–32 weeks on each of the following diets: a purified basal diet deficient in α-tocopherol and selenium, an identical control diet supplemented with α-tocopherol and selenium, and a commercial laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commercial lab chow is similar to that which we observed for bovine retinal pigment epithelium.Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

6.
The antioxidant activities of RRR-vitamin E (VE), all-rac-vitamin E (all-rac-VE), trolox, RRR-vitamin E acetate (VEA), all-rac-vitamin E phosphate (VEP) and RRR-vitamin E succinate (VES) were compared. In this study, the rank order in the inhibition of lipid peroxidation (LPO) of VE and its derivatives was trolox>VE approximately all-rac-VE>VEA>VES. VE and trolox inhibited LPO in non-heated and heated rat liver microsomes. It has generally been accepted that this is due to scavenging of free radicals by these antioxidants, and during this protection the antioxidants are oxidized. VEA and VES have to be converted into VE by esterases to obtain antioxidant activity against LPO. VEP, however, had a potent antioxidant effect of its own without conversion to VE. In contrast to VE, VEP is not consumed during this protection. Of the compounds tested, VEP is the most potent in induction of hemolysis of erythrocytes. EPR experiments using the spin label 16-doxylstearic acid showed that VEP reduces membrane fluidity, in contrast to VE. This indicates that VEP acts as a detergent and forms a barrier that might inhibit the transfer of radicals from one polyunsaturated fatty acid to another. This new mechanism may form the basis for a new class of antioxidants.  相似文献   

7.
Lipidic components, as well as fatty acid composition and vitamin E content were determined in colostrum (days 3-5 of postpartum) and mature milk (day 21) in 8 women from Murcia (Spain). Triglycerides concentration was higher and cholesterol and esterified cholesterol were lower in mature milk than in colostrum, whereas phospholipid content was similar. These differences indicate that the diameter of milk fat globules increases in mature milk. The percentage of medium-chain fatty acids (12:0 and 14:0) increased in mature milk as compared to colostrum, reflecting de novo synthesis of fatty acids. With the only exception of stearic acid which was lower in mature milk than in colostrum, the remaining long-chain fatty acids was similar. The proportion of both linoleic (18:2) and eicosapentaenoic (20:5) acids found in mature milk and colostrum is higher than in studies from other countries and may reflect the intake of high proportions of polyunsaturated fat from vegetable oils and fish in the studied women. Both vitamin E content and vitamin E/linoleic acid ratio in mature milk are lower than in colostrum, evidencing the efficient mechanism of mammary gland vitamin E uptake around parturition.  相似文献   

8.
In a two-year experiment on 190 Wistar rats the effects were studied of the aging process and diet enrichment with selenium, vitamin E and vitamin B15 (pangamic acid) on the degree of fatty infiltration of the liver determined histochemically with Oil Red O. The degree of fatty infiltration of the liver was assessed by the method of quantitative analysis using a computer image analyser Quantimet 720. System 30 (Cambridge Instruments). The process of aging of the animals was associated with increasing fatty infiltration of the liver. Selenium had a two-phase effect on the degree of fatty infiltration: in the first 12 months of selenium administration (0.1 ppm of sodium selenite per 100 g of the diet) fatty infiltration of the liver was decreasing, and after 18 months of the experiment this effect disappeared and the degree of fatty infiltration was not different from that in the control group. Contrary to this, vitamin E administration 6 mg/100 g of the diet increased the degree of fatty infiltration during the first 12 months. After 18 months a reverse effect appeared with inhibition of the progression of fatty infiltration. Thus the two-phase effect of vitamin E was a reverse of selenium effect. Addition of vitamin B15 to the diet (2.5 mg/100 g of diet) increased the degree of fatty infiltration of the liver which was maintained at a stable level throughout the whole experiment, i.e. 12-18 months.  相似文献   

9.
Vitamin E and selenium have both been shown to have immunostimulatory effects in a variety of species when administered in quantities in excess of established deitary requirements. Responses to each nutrient appeared to be independent of the nutrition of the other. Deficiencies of vitamin E and selenium conversely caused suppression of the immune response system, particularly, cell mediated mechanisms. Suppression was shown to be associated with serum factors coating lymphocytes from dogs deficient in vitamin E and selenium. Oral supplementation with vitamin E transformed or removed the suppressive factors, dietary selenium had no effect. In vitro peripheral lymphocyte blast transformation tests corroborated observations of in vivo studies. Reducing agents and synthetic anti-oxidants eliminated suppressive effects in vitro. Suppression was most marked in dogs fed diets highest in polyunsaturated fatty acid (PUFA) content, providing conditions most conductive to lipid peroxidation in vivo. The essential fatty acids linoleic and arachidonic have been shown to similarly influence immunoregulatory mechanisms in vivo. The effect may be a direct one since plasma membrane fluidity of lymphoid cells increases the probability of modification of cell--antigen interactions by PUFA. However, their effect may also be an indirect one. PUFA are known precursor substances of E anf F type prostaglandins which have been shown to affect immediate and delayed hypersensitivity by stimulating synthesis of cyclic AMP. More definitive studies are needed to resolve this question.  相似文献   

10.
The fatty acid composition of retinal tissues was measured in rats maintained for 26--32 weeks on each of the following diets: a purified basal diet deficient in alpha-tocopherol and selenium, an identical control diet supplemented with alpha-tocopherol and selenium, and a commerical laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commerical lab chow is similar to that which we observed for bovine retinal pigment epithelium. Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

11.
Vitamin E is a fat-soluble vitamin that consists of a group of tocols and tocotrienols with hydrophobic character, but possessing a hydroxyl substituent that confers an amphipathic character on them. The isomers of biological importance are the tocopherols, of which alpha-tocopherol is the most potent vitamin. Vitamin E partitions into lipoproteins and cell membranes, where it represents a minor constituent of most membranes. It has a major function in its action as a lipid antioxidant to protect the polyunsaturated membrane lipids against free radical attack. Other functions are believed to be to act as membrane stabilizers by forming complexes with the products of membrane lipid hydrolysis, such as lysophospholipids and free fatty acids. The main experimental approach to explain the functions of vitamin E in membranes has been to study its effects on the structure and stability of model phospholipid membranes. This review describes the function of vitamin E in membranes and reviews the current state of knowledge of the effect of vitamin E on the structure and phase behaviour of phospholipid model membranes.  相似文献   

12.
The effects of fish oil (FO) and vitamin E (vE) dietary supplementation on semen quality, sperm susceptibility to lipid peroxidation, tocopherols content and fatty acid profiles were studied in rabbits. Fifty-two rabbit bucks randomly divided in four groups received a control diet and enriched diets containing either FO (1.5%, w/w), vE (200 mg/kg) or both. Semen volume, concentration, motility and viability were analysed at various time-points and the lipid composition was assessed on sperm cells. The phospholipid fatty acid profile was determined: n-6 PUFA were the major fatty acids found, with a proportion of 42%, whereas the n-3 PUFA accounted for nearly 1%, mainly represented by C22:6n-3 (docosahexaenoic acid, DHA). FO supplementation produced a seven-fold increase in the content of DHA in sperm phospholipids and a comprehensive rearrangement of the phospholipid fatty acid composition, while an unexpected negative effect of feeding high level of vE on the proportion of total PUFA was found. Despite the remarkable changes observed in sperm lipid composition, semen quality parameters were not affected by the dietary treatments and the interaction between the two dietary supplements had a significant effect only on sperm concentration. An increase in semen production by ageing and a concomitant rise in sperm susceptibility to in vitro peroxidation was found. α- and δ-tocopherol, present in rabbit sperm in similar amount, were not affected by dietary treatment. δ-tocopherol content had a significant linear negative regression with age and showed a significant negative correlation with the susceptibility to peroxidation values.  相似文献   

13.
Studies are reported on the oxidation of vitamin E and changes in lipid and fatty acid composition of rat blood components incubated in vitro with hydroperoxides prepared from autoxidized methyl linoleate. Red blood cells, plasma, serum, and hemoglobin free stroma were incubated at 37 °C with suspensions of linoleate hydroperoxide in Tris buffer at pH 7.4. The RBC were destroyed and substances with excitation-fluorescent properties were produced. Phosphatidylethanolamine, vitamin E and unsaturated fatty acids were oxidized in the reaction. Among the reaction products were substances that gave a positive thiobarbituric acid value, tocoquinone, and an unidentified substance isolated in the nonsaponifiable fraction of the lipid extract of the hemolyzed red cells. The reaction of linoleate hydroperoxide with stroma was similar to that with red blood cells and the same products were observed. In contrast there was little reaction of linoleate hydroperoxide with vitamin E or lipids of the serum or plasma in the absence of red blood cells. The destruction of the red blood cells appeared to be closely related to the oxidation of vitamin E indicating that the strong antioxygenic action of vitamin E in vivo was due to its particular form or structural orientation in the red cell membrane.  相似文献   

14.
Interaction of alpha-tocopherol with free fatty acids in bovine retinal photoreceptor membranes was studied using ESR spin-probe technique and measurements of rhodopsin thermal denaturation rates. Exogenous alpha-tocopherol incorporated into photoreceptor membranes prevented thermal destabilization of rhodopsin caused by free fatty acids. The efficiency of the stabilizing action of alpha-tocopherol directly depended both on the chain length and the degree of fatty acid unsaturation.  相似文献   

15.
Highly purified bovine rod outer segment membranes show loss of structural integrity under an air atmosphere. Obvious ultrastructural changes are preceded by increases in absorbance below 400 nm. These changes are inhibited by Ar or N2 atmospheres and appear to be due primarily to oxidative damage to the polyunsaturated fatty acids of the membrane lipids. Loss of polyunsaturated fatty acids, formation of malonaldehyde and fluorescent products characteristic of lipid oxidation accompany the spectral alterations. The elevated ultraviolet absorbance can largely be removed from the membranes by gentle extraction of the lipids using phospholipase C and hexane without changing the visible absorbance of rhodopsin.We have found a large seasonal variation in the endogenous level of α-tocopherol (vitamin E) in the bovine rod outer segment preparations. For much of the year we find that the rod outer segment membranes contain higher levels of α-tocopherol than have been previously reported in biological membranes. Rod outer segments which are low in endogenous tocopherol can be protected from oxygen damage by adding exogenous tocopherol. The rod outer segments are extremely susceptible to oxygen damage due to the unusually high content of polyunsaturated fatty acids in the membrane lipids. The presence of tocopherol inhibits oxygen damage but does not eliminate it. The tocopherol in the rod outer segments is consumed in air, thus complete protection from peroxidation in vitro requires an inert atmosphere as well as high levels of tocopherol.This work suggests that extensive precautions against oxidative degradation should also be employed in studies of other membrane systems where important deleterious effects of oxygen may be less obvious.  相似文献   

16.
Vitamin E is a natural antioxidant that has been used in animal and human studies to determine its potential in reducing cardiovascular risk; however, a detailed study in an established obese model of atherosclerosis has yet to be performed. In our current study, we show that obesity and hyperlipidemia cause a synergistic, age-related increase in urinary isoprostane levels in mice deficient in both leptin and low-density lipoprotein receptor (ob/ob;LDLR-/-). Based upon this observation, we hypothesized that vitamin E supplementation would induce potent antiatherogenic effects in this model. Lean and obese LDLR-/- mice were provided vitamin E (2000 IU/kg) in a Western-type high-fat diet for 12 weeks. Plasma lipid parameters, such as total cholesterol (TC), triglyceride (TG) and free fatty acid, were significantly higher in obese mice compared to lean mice at baseline (P<.001). Western-type diet (WD) feeding caused an increase in TC levels in all groups (P<.001); however, TG (P<.001) and free fatty acid (P<.01) were elevated only in lean mice following WD feeding. Vitamin E supplementation neither influenced any of these parameters nor reduced urinary isoprostanes in lean or obese mice. Vitamin E supplementation in ob/ob;LDLR-/- mice resulted in a trend toward a reduction in atherosclerotic lesion area (P=.10), although no differences in lesion area were noted in lean LDLR-/- animals. These data provide evidence that vitamin E supplementation is not sufficient to reduce extreme elevations in systemic oxidative stress due to hyperlipidemia and obesity and, thus, may not be cardioprotective in this setting.  相似文献   

17.
Incubation of human blood platelets in vitro in Tyrode solution with unsaturated fatty acids, diamide or superoxide (generated in situ) resulted in the oxidation of tocopherol in the platelets. Arachidonate concentrations of (3-5).10(-4) M caused a 50% decrease in platelet alpha-tocopherol. The addition of saturated fatty acids or platelet-active substances such as ADP, dibutyryl cyclic AMP, and some prostaglandins, or peroxidizing agents such as hydrogen peroxide and tert-butylhydroperoxide to the incubation medium did not cause any change in platelet tocopherol content. During incubations of platelets with arachidonate, malonaldehyde as well as alpha-tocopherolquinone were produced. The latter was also produced during incubations with diamide or superoxide. The oxidation of tocopherol induced by unsaturated fatty acids may be one factor responsible for the well-known increase in dietary vitamin E requirements induced by polyunsaturated fatty acids. The oxidative consumption of tocopherol in the membranes could be expected to take place during localized release of oxidants such as superoxide and polyunsaturated fatty acids during normal biological function (e.g., phagocytosis) or pathological processes (e.g., ischemia). Tocopherol utilization is kept low probably by the regeneration of the compound by vitamin C and/or the preferential utilization of the other biological antioxidants.  相似文献   

18.
The present study evaluated the effect of increasing supplementation of all-rac-α-tocopheryl acetate and dietary fatty acid composition during a four week period after weaning on porcine tissue composition of α-tocopherol stereoisomers and fatty acids, and on hepatic expression of genes involved in transfer of α-tocopherol, and oxidation and metabolism of fatty acids. From day 28 to 56 of age, pigs were provided 5% of tallow, fish oil or sunflower oil and 85, 150, or 300 mg/kg of all-rac-α-tocopheryl acetate. Samples of liver, heart, and adipose tissue were obtained from littermates at day 56. Tissue fatty acid composition was highly influenced by dietary fat sources. Dietary fatty acid composition (P<0.001) and vitamin E supplementation (P<0.001) influenced the α-tocopherol stereoisomer composition in liver, i.e. less proportion of the RRR-α-tocopherol was observed in pigs provided fish oil and the highest dose of vitamin E in comparison with other dietary treatments. In addition, the stereoisomer composition of α-tocopherol in heart, and adipose tissue was influenced by dietary treatments. Expression of genes in liver involved in the regulation of FA conversion, SCD (P=0.002) and D6D (P=0.04) were lower in pigs fed fish oil compared to other treatments, whereas the fatty acid oxidation, as indicated by the expression of PPAR-α, was higher when sunflower and fish oil was provided (P=0.03). Expression of α-TTP in liver was higher in pigs fed fish oil (P=0.01). Vitamin E supplementation did not influence significantly the hepatic gene expression.  相似文献   

19.
Recent studies on chicken semen have suggested that the lipid and fatty acid composition of spermatozoa may be important determinants of fertility. Phospholipid fatty acid composition, vitamin E content and in vitro susceptibility to lipid peroxidation of duck spermatozoa were investigated using GC-MS and HPLC based methods. The total phospholipid fraction of duck spermatozoa was characterized by high proportions of the n-6 polyunsaturated fatty acids arachidonic (20:4n-6), docosatetraenoic (22:4n-6) and docosapentaenoic (22:5n-6) acids but a substantial proportion of the n-3 fatty acid docosahexaenoic (22:6n-3) acid was also present. Palmitic (16:0) and stearic (18:0) fatty acids were the major saturates in sperm phospholipids. Among the phospholipid classes, phosphatidylserine (PS) had the highest degree of unsaturation due to very high proportions of 22:6n-3, 22:5n-6, 22:4n-6 and 20:4n-6, comprising together more than 75% of total fatty acids in this fraction. Phosphatidylethanolamine (PE) also contained high proportions of these four C(20-22) polyunsaturates, which together formed 60% of total fatty acids in this phospholipid. Spermatozoa and seminal plasma of duck semen were characterized by unexpectedly low content of vitamin E, being more than 4-fold lower than in chicken semen. In duck semen the major proportion of the vitamin E (>70%) was located in the spermatozoa. The very high proportion of 22:6n-3 in PS and PE fractions of duck sperm lipids and the comparatively low levels of vitamin E could predispose semen to lipid peroxidation. Nevertheless the in vitro susceptibilities to Fe2+-stimulated lipid peroxidation of duck and chicken spermatozoa were very similar. The results of the study suggest that increased superoxide dismutase and glutathione peroxidase activity and increased antioxidant activity of seminal plasma may compensate for the low levels of vitamin E to help protect the membranes of duck spermatozoa, which exhibit a high degree of unsaturation from oxidative stress.  相似文献   

20.
The hemolytic effect of saturated fatty acids increased rapidly, when the number of carbon atoms in the chain exceeded 12. At low fatty acid concentrations (less than 60 microM) the hemolytic effect decreased with increasing number of double bonds in the carbon chain (cis-form fatty acids). A more complex pattern was observed at higher fatty acid concentrations. Trans-unsaturated fatty acids were more hemolytic than cis-analogs. Ceruloplasmin, a serum protein with no fatty acid binding capacity, reduced the hemolytic effect of fatty acids; possibly by interacting with the cell membrane. Reducing compounds (thiols, vitamin C) also protected against fatty acid induced hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号