首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial pressures of CO2 (pCO2) andCH4 (pCH4) in streams are not only governed byinstream processes, but also by transformations occurring in soil andgroundwater ecosystems. As such, stream water pCO2 andpCH4 can provide a tool to assess ecosystem respiration andanaerobic metabolism throughout drainage basins. We conducted three surveyssampling the gas content of streams in eastern Tennessee and western NorthCarolina to assess factors regulating ecosystem metabolism in catchmentswith contrasting geomorphologies, elevations and soil organic matterstorage. In our first survey, the influence of drainage basin geomorphologyon ecosystem respiration was examined by sampling streams drainingcatchments underlain by either shale or dolomite. Geomorphology isinfluenced by geology with shale catchments having shallower soils, broader,unconstrained valley floors compared with dolomite catchments.pCO2 varied little between catchment types but increased froman average of 3340 ppmv in spring to 9927 ppmv in summer or 9.3 and 28 timesatmospheric equilibrium (pCO2(equilib)), respectively. Incontrast, pCH4 was over twice as high in streams drainingshale catchments (306 ppmv; pCH4(equilib) = 116) compared withmore steeply incised dolomite basins (130 ppmv; pCH4(equilib)= 51). Using the ratio of pCH4:pCO2 as an indexof anaerobic metabolism, shale catchments had nearly twice as muchanaerobiosis (pCH4:pCO2 = 0.046) than dolomitedrainages (pCH4:pCO2 = 0.024). In our secondsurvey, streams were sampled along an elevational gradient (525 to 1700 m)in the Great Smoky Mountains National Park, USA where soil organic matterstorage increases with elevation. pCO2 did not vary betweenstreams but increased from 5340 ppmv (pCO2(equilib) = 15) to8565 ppmv (pCO2(equilib) = 24) from spring to summer,respectively. During spring pCH4 was low and constant acrossstreams, but during summer increased with elevation ranging from 17 to 2068ppmv (pCH4(equilib) = 10 to 1216). The contribution ofanaerobiosis to total respiration was constant during spring(pCH4:pCO2 = 0.017) but during summer increasedwith elevation from 0.002 at 524 m to 0.289 at 1286 m. In our last survey,we examined how pCO2 and pCH4 changed withcatchment size along two rivers (ca. 60 km stretches in both riverscorresponding to increases in basin size from 1.7–477km2 and 2.5–275 km2). pCO2and pCH4 showed opposite trends, with pCO2decreasing ca. 50% along the rivers, whereas pCH4roughly doubled in concentration downstream. These opposing shifts resultedin a nearly five-fold increase of pCH4:pCO2along the rivers from a low of 0.012 in headwaters to a high of 0.266 65-kmdownstream. pCO2 likely declines moving downstream asgroundwater influences on stream chemistry decreases, whereaspCH4 may increase as the prevalence of anoxia in riversexpands due to finer-grained sediments and reduced hydrologic exchange withoxygenated surface water.  相似文献   

2.
Summary The effects of pCO2 and pCH4 in the interval 0–1 bar on rates of acetate degradation and methane formation by methanogens as well as methane yields were studied in enrichment cultures in batch and continuous fermentations.In batch fermentations the rate of acetate utilization by methanogens was 1,000–1,500 mg/l · d at low levels of pCO2. CO2 was inhibitory and degradation rates were around 350 mg/l · d in 1 bar CO2. The degradation of acetate was almost linear. In continuous culture maximum rates of acetate utilization around 2,500 mg/l · d were obtained and the acetate concentration in the substrate was reduced by 98–99%.The yields of methane on acetate substrates were close to the theoretical value (1 mole CH4 per mole HAc) in the interval pCO2-0–0.5 bar. In 1 bar CO2 yields decreased by 20–30%.CH4 was found to be only slightly inhibitory; the inhibiting effects of 1 bar CH4 on acetate degradation rates were comparable to the effects of 0.3 bar CO2. Also gas sparging and rapid mixing had small effects compared with a non-sparged, slowly mixed culture.The redox potential was usually around –200 mV during fermentations and no connection was found between acetate degradation rate, Eh and pCO2.Acetate and propionate degradation were the reactions most sensitive to pCO2 and to obtain maximum rates as well as maximum methane yields pCO2-levels around 0.2 bar were found to be optimal.  相似文献   

3.
The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 µatm. The mean (± SD) pCO2 and pHtot in August were 239±20 µatm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pHtot in September were 1082±711 µatm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 µatm, 219±89 μatm and 1488±574 µatm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats.  相似文献   

4.
The Southern Ocean, a region that will be an ocean acidification hotspot in the near future, is home to a uniquely adapted fauna that includes a diversity of lightly-calcified invertebrates. We exposed the larvae of the echinoid Sterechinus neumayeri to environmental levels of CO2 in McMurdo Sound (control: 410 µatm, Ω = 1.35) and mildly elevated pCO2 levels, both near the level of the aragonite saturation horizon (510 µatm pCO2, Ω = 1.12), and to under-saturating conditions (730 µatm, Ω = 0.82). Early embryological development was normal under these conditions with the exception of the hatching process, which was slightly delayed. Appearance of the initial calcium carbonate (CaCO3) spicule nuclei among the primary mesenchyme cells of the gastrulae was synchronous between control and elevated pCO2 treatments. However, by prism (7 days after the initial appearance of the spicule nucleus), elongating arm rod spicules were already significantly shorter in the highest CO2 treatment. Unfed larvae in the 730 µatm pCO2 treatment remained significantly smaller than unfed control larvae at days 15–30, and larvae in the 510 µatm treatment were significantly smaller at day 20. At day 30, the arm lengths were more differentiated between 730 µatm and control CO2 treatments than were body lengths as components of total length. Arm length is the most plastic morphological aspect of the echinopluteus, and appears to exhibit the greatest response to high pCO2/low pH/low carbonate, even in the absence of food. Thus, while the effects of elevated pCO2 representative of near future climate scenarios are proportionally minor on these early developmental stages, the longer term effects on these long-lived invertebrates is still unknown.  相似文献   

5.
The marine diatom Thalassiosira pseudonana was grown in continuous culture systems to study the interactive effects of temperature, irradiance, nutrient limitation, and the partial pressure of CO2 (pCO2) on its growth and physiological characteristics. The cells were able to grow at all combinations of low and high irradiance (50 and 300 μmol photons · m−2 · s−1, respectively, of visible light), low and high pCO2 (400 and 1,000 μatm, respectively), nutrient limitation (nitrate-limited and nutrient-replete conditions), and temperatures of 10–32°C. Under nutrient-replete conditions, there was no adverse effect of high pCO2 on growth rates at temperatures of 10–25°C. The response of the cells to high pCO2 was similar at low and high irradiance. At supraoptimal temperatures of 30°C or higher, high pCO2 depressed growth rates at both low and high irradiance. Under nitrate-limited conditions, cells were grown at 38 ± 2.4% of their nutrient-saturated rates at the same temperature, irradiance, and pCO2. Dark respiration rates consistently removed a higher percentage of production under nitrate-limited versus nutrient-replete conditions. The percentages of production lost to dark respiration were positively correlated with temperature under nitrate-limited conditions, but there was no analogous correlation under nutrient-replete conditions. The results suggest that warmer temperatures and associated more intense thermal stratification of ocean surface waters could lower net photosynthetic rates if the stratification leads to a reduction in the relative growth rates of marine phytoplankton, and at truly supraoptimal temperatures there would likely be a synergistic interaction between the stresses from temperature and high pCO2 (lower pH).  相似文献   

6.
Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont‐bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2. Net oxygen production increased up to 90% with increasing pCO2; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16–39%) at low pH/high pCO2 compared to present‐day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 μatm), but it was found in densities of over 1000 m?2 at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 μatm, thus are likely to be extinct in the next century.  相似文献   

7.
Rising atmospheric CO2‐concentrations will have severe consequences for a variety of biological processes. We investigated the responses of the green alga Ulva lactuca (Linnaeus) to rising CO2‐concentrations in a rockpool scenario. U. lactuca was cultured under aeration with air containing either preindustrial pCO2 (280 μatm) or the pCO2 predicted by the end of the 21st century (700 μatm) for 31 days. We addressed the following question: Will elevated CO2‐concentrations affect photosynthesis (net photosynthesis, maximum relative electron transport rate (rETR(max)), maximum quantum yield (Fv/Fm), pigment composition) and growth of U. lactuca in rockpools with limited water exchange? Two phases of the experiment were distinguished: In the initial phase (day 1–4) the Seawater Carbonate System (SWCS) of the culture medium could be adjusted to the selected atmospheric pCO2 condition by continuous aeration with target pCO2 values. In the second phase (day 4–31) the SWCS was largely determined by the metabolism of the growing U. lactuca biomass. In the initial phase, Fv/Fm and rETR(max) were only slightly elevated at high CO2‐concentrations, whereas growth was significantly enhanced. After 31 days the Chl a content of the thalli was significantly lower under future conditions and the photosynthesis of thalli grown under preindustrial conditions was not dependent on external carbonic anhydrase. Biomass increased significantly at high CO2‐concentrations. At low CO2‐concentrations most adult thalli disintegrated between day 14 and 21, whereas at high CO2‐concentrations most thalli remained integer until day 31. Thallus disintegration at low CO2‐concentrations was mirrored by a drastic decline in seawater dissolved inorganic carbon and HCO3?. Accordingly, the SWCS differed significantly between the treatments. Our results indicated a slight enhancement of photosynthetic performance and significantly elevated growth of U. lactuca at future CO2‐concentrations. The accelerated thallus disintegration at high CO2‐concentrations under conditions of limited water exchange indicates additional CO2 effects on the life cycle of U. lactuca when living in rockpools.  相似文献   

8.
Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2) concentrations has supported the view that copepods are ‘winners’ under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage‐specific responses to pCO2 (385–6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2. In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2. This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life‐cycle approach to make species‐level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.  相似文献   

9.
Summary Thermophilic cultures producing methane from glucose at 55 °C were developed from mesophilic and thermophilic inocula. Rates of fatty acid degradation and methane yields were compared. A high pCO2 was found to decrease the temperature maximum for acetate degradation. In a glucose-enrichment in N2-atomosphere methane production from glucose was possible at 80°C.  相似文献   

10.
Recent experimental evidence suggests that changes in the partial pressure of CO2 (pCO2), in concert with nutrient fertilisation, may result in increased primary production and shifted phytoplankton community composition that favours species lacking adaptations to low CO2 environments. It is not clear whether these results apply in ambient freshwaters, which are already often supersaturated in CO2, and where phytoplankton structure and activity are under complex control of diverse local and regional factors. Here, we use a large‐scale comparative study of 69 boreal lakes to explore the influence of existing CO2 gradients (c. 50–2300 μatm) on phytoplankton community composition and biomass production. While community composition did not respond to pCO2 gradients, gross primary production was enhanced, but only in lakes already supersaturated in CO2, demonstrating that environmental context is key in determining pCO2–phytoplankton interactions. We further argue that increased atmospheric CO2 is unlikely to influence phytoplanktonic composition and production in northern lakes.  相似文献   

11.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

12.
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3 uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 μatm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 μatm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.  相似文献   

13.
The effect of decreasing aragonite saturation state (ΩArag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440–340 μatm), ΩArag (1.4–4.0), and dissolved inorganic carbon (DIC) concentrations (2,100–1,850 μmol kg−1). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in ΩArag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 μmol kg−1 (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to ΩArag at BR. When normalized to NP, calcification was linearly related to ΩArag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low ΩArag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased ΩArag (increased pCO2) whatever the nutrient loading.  相似文献   

14.
The partial pressure of carbon dioxide (pCO2) in lake ecosystems varies over four orders of magnitude and is affected by local and global environmental perturbations associated with both natural and anthropogenic processes. Little is known, however, about how changes in pCO2 extend into the function and structure of food webs in freshwater ecosystems. To fill this gap, we performed laboratory experiments using the ecologically important planktonic herbivore Daphnia and its algal prey under a natural range of pCO2 with low light and phosphorus supplies. The experiment showed that increased pCO2 stimulated algal growth but reduced algal P : C ratio. When feeding on algae grown under high pCO2, herbivore growth decreased regardless of algal abundance. Thus, high CO2‐raised algae were poor food for Daphnia. Short‐term experimental supplementation of PO4 raised the P content of the high CO2‐raised algae and improved Daphnia growth, indicating that low Daphnia growth rates under high pCO2 conditions were due to lowered P content in the algal food. These results suggest that, in freshwater ecosystems with low nutrient supplies, natural processes as well as anthropogenic perturbations resulting in increased pCO2 enhance algal production but reduce energy and mass transfer efficiency to herbivores by decreasing algal nutritional quality.  相似文献   

15.
The partial pressure of carbon dioxide (pCO2), calculated from pH and total alkalinity measurements, was monitored together with chlorophyll a and bacterioplankton biomass in shallow coastal water located inside and outside a giant kelp bed (Macrocystis pyrifera) situated in the Kerguelen Archipelago, Southern Ocean. In spite of large changes over a short time-scale, pCO2 variations over the year are large and exhibit a seasonal pattern in which the different stages of the annual biological turnover are well marked. The overall pattern of pCO2 variations is related to biological activity (development of both photosynthesis and respiration) during almost the whole year. However, physical and thermodynamical constraints exert a strong influence on pCO2 at meso time-scale (10 days) and/or when biological activity is weak. Macrocystis acts to maintain pCO2 below saturation almost the whole year and large undersaturations (pCO2 as low as 20 μatm) were observed within the kelp bed. Furthermore, primary production of Macrocystis covers a period of 8 ∼ 9 months a year from winter to late summer and the kelp bed seems to favour the spring phytoplanktonic bloom. The buffer factor β indicates that, outside the kelp bed, inorganic carbon dynamics are mainly influenced by air-sea exchange and photosynthesis without calcification. Inside the kelp bed, β suggests calcification by the epiphytic community. Accepted: 1 April 2000  相似文献   

16.
Summary The rates of glucose utilization by fermentative bacteria and propionate and butyrate utilization by acetogenic bacteria were studied and their dependence of pCO2 in the interval 0–1 bar was determined. A batch fermentation method was used permitting good control of fermentation parameters and rapid experiments.The rate of glucose fermentation to acids, CO2 and H2 was in the order of 12,000 mg glucose/l · day which was about two orders of magnitude faster than the utilization of propionic and butyric acid by acetogenic bacteria. The rate of glucose utilization was about 30% greater at low values of pCO2 compared with 1 bar CO2.Propionate degradation was strongly affected by pCO2; rates were 60 mg/l · day at pCO2=1 bar and 200 mg/l · day at pCO2=0.2 bar. Some CO2 was required since the rate of propionate utilization dropped rapidly below pCO2=0.2 bar. The rate of butyric acid utilization was constant at 170 mg/l · day; slightly lower at pCO2=1 bar.Yields of methane from glucose or acids were close to the theoretical value 50% of degraded substrate-carbon. Yields were 20–30% higher at low values of pCO2 compared with 1 bar CO2.The redox potential was usually between –200 and –250 mV, slowly increasing to between –150 and –200 mV during fermentation. No clear connection between rates of substrate utilization, pCO2 and Eh was detected.  相似文献   

17.
Growth and viral infection of the marine picoeukaryote Micromonas pusilla was studied under a future-ocean scenario of elevated partial CO2 (pCO2; 750 μatm versus the present-day 370 μatm) and simultaneous limitation of phosphorus (P). Independent of the pCO2 level, the ratios of M. pusilla cellular carbon (C) to nitrogen (N), C:P and N:P, increased with increasing P stress. Furthermore, in the P-limited chemostats at growth rates of 0.32 and 0.97 of the maximum growth rate (μmax), the supply of elevated pCO2 led to an additional rise in cellular C:N and C:P ratios, as well as a 1.4-fold increase in M. pusilla abundance. Viral lysis was not affected by pCO2, but P limitation led to a 150% prolongation of the latent period (6 to 12 h) and an 80% reduction in viral burst sizes (63 viruses per cell) compared to P-replete conditions (4 to 8 h latent period and burst size of 320). Growth at 0.32 μmax further prolonged the latent period by another 150% (12 to 18 h). Thus, enhanced P stress due to climate change-induced strengthened vertical stratification can be expected to lead to reduced and delayed virus production in picoeukaryotes. This effect is tempered, but likely not counteracted, by the increase in cell abundance under elevated pCO2. Although the influence of potential P-limitation-relieving factors, such as the uptake of organic P and P utilization during infection, is unclear, our current results suggest that when P limitation prevails in future oceans, picoeukaryotes and grazing will be favored over larger-sized phytoplankton and viral lysis, with increased matter and nutrient flow to higher trophic levels.  相似文献   

18.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   

19.
The quantitative contribution of tropical estuaries to the atmospheric CO2 budget has large uncertainties, both spatially and seasonally. We investigated the seasonal and spatial variations of carbon biogeochemistry downstream of Ho Chi Minh City (Southern Vietnam). We sampled four sites distributed from downstream of a highly urbanised watershed through mangroves to the South China Sea coast during the dry and wet seasons. Measured partial pressure of CO2 (pCO2) ranged from 660 to 3000 μatm during the dry season, and from 740 to 5000 μatm during the wet season. High organic load, dissolved oxygen saturation down to 17%, and pCO2 up to 5000 μatm at the freshwater endmember of the estuary reflected the intense human pressure on this ecosystem. We show that releases from mangrove soils affect the water column pCO2 in this large tropical estuary (~600 m wide and 10–20 m deep). This study is among the few to report direct measurements of both water pCO2 and CO2 emissions in a Southeast Asian tropical estuary located in a highly urbanised watershed. It shows that the contribution of such estuaries may have been previously underestimated, with CO2 emissions ranging from 74 to 876 mmol m?2 day?1 at low current velocity (< 0.2 m s?1). Corresponding gas transfer velocities k600, ranging from 1.7 to 11.0 m day?1, were about 2 to 4 times of k600 estimated using published literature equations.  相似文献   

20.
Ocean acidification substantially alters ocean carbon chemistry and hence pH but the effects on sea ice formation and the CO2 concentration in the enclosed brine channels are unknown. Microbial communities inhabiting sea ice ecosystems currently contribute 10–50% of the annual primary production of polar seas, supporting overwintering zooplankton species, especially Antarctic krill, and seeding spring phytoplankton blooms. Ocean acidification is occurring in all surface waters but the strongest effects will be experienced in polar ecosystems with significant effects on all trophic levels. Brine algae collected from McMurdo Sound (Antarctica) sea ice was incubated in situ under various carbonate chemistry conditions. The carbon chemistry was manipulated with acid, bicarbonate and bases to produce a pCO2 and pH range from 238 to 6066 µatm and 7.19 to 8.66, respectively. Elevated pCO2 positively affected the growth rate of the brine algal community, dominated by the unique ice dinoflagellate, Polarella glacialis. Growth rates were significantly reduced when pH dropped below 7.6. However, when the pH was held constant and the pCO2 increased, growth rates of the brine algae increased by more than 20% and showed no decline at pCO2 values more than five times current ambient levels. We suggest that projected increases in seawater pCO2, associated with OA, will not adversely impact brine algal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号