首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previously we have shown that THP-1 cells synthesize matrix metalloproteinase-9 (MMP-9) where a fraction of the enzyme is strongly linked to a proteoglycan (PG) core protein. In the present work we show that these pro-MMP-9.PG heteromers have different biochemical properties compared with the monomeric form of pro-MMP-9. In these heteromers, the fibronectin II-like domain in the catalytic site of the enzyme is hidden, and the fibronectin II-like-mediated binding to gelatin and collagen is prevented. However, a fraction of the pro-MMP-9.PG heteromers interacted with gelatin and collagen. This interaction was not through the chondroitin sulfate (CS) part of the PG molecule but, rather, through a region in the PG core protein, a new site induced by the interaction of pro-MMP-9 and the PG core protein, or a non-CS glycosaminoglycan part of the PG molecule. The interaction between pro-MMP-9.PG heteromers and gelatin was weaker than the interaction between pro-MMP-9 and gelatin. In contrast, collagen I bound to pro-MMP-9.PG heteromers and pro-MMP-9 with approximately the same affinity. Removal of CS chains from the PG part of the heteromers did not affect the binding to gelatin and collagen. Although the identity of the PG core protein is not known, this does not have any impact on the described biochemical properties of the heteromer or its pro-MMP-9 component. It is also shown that a small fraction of the PG, which is not a part of the pro-MMP-9.PG heteromer, can bind gelatin. As for the pro-MMP-9.PG heteromers, this was independent of the CS chains. The structure that mediates the binding of free PG to gelatin is different from the corresponding structure in the pro-MMP-9.PG heteromer, because they were eluted from gelatin-Sepharose columns under totally different conditions. Although only a small amount of pro-MMP-9.PG heteromer is formed, the heteromer may have fundamental physiological importance, because only catalytic amounts of the enzyme are required to digest physiological targets.  相似文献   

3.
It has previously been shown that matrix metalloproteinase-9 (MMP-9) levels, originating from macrophages, are considerably increased in human Helicobacter pylori-associated gastritis. Here, the early kinetics of the MMP-9 response resulting from Helicobacter infection in C57BL/6 and MMP-9 knock-out mice using the murine Helicobacter felis model were examined. H. felis infection induced severe gastritis in the murine stomach at just 2 weeks after infection. Before gastritis, an increase was observed in MMP-9-positive cells detected by immunohistochemistry in the basal lamina propria. This finding was corroborated by gelatin zymography of stomach samples. As the gastritis increased so did the concentration of MMP-9 and the incidence of gastric MMP-9-positive cells, their location corresponding to that of macrophages. In contrast, systemic levels of MMP-9 remained unchanged. When MMP-9-deficient mice were infected with H. felis, no significant difference in gastritis development was detected compared with disease development in wild-type animals. We conclude that MMP-9 production is an early event in the response to gastric Helicobacter infection, a feature that may favor the recruitment of immune cells early during infection. At later stages, however, the increased levels of MMP-9 may damage the integrity of the stomach mucosa.  相似文献   

4.
5.
Alpha-lipoic acid (LA) is a disulphide-containing fatty acid that is absorbed from the diet and transported to tissues. Once it has been taken up by mammalian cells, LA is reduced to dihydrolipoic acid (DHLA), a vicinal dithiol, and rapidly effluxed into the extracellular milieu. We hypothesized that DHLA may be an effective inhibitor of human gelatinase B (GelB). Purified human GelB was incubated with 0 to 200 micromol/L DHLA, and residual enzyme activity was measured by HPLC using a fluorogenic substrate (matrix metalloproteinase substrate III). DHLA inhibited GelB in a dose-dependent fashion with an IC50 of 20 micromol/L. Oxidation of DHLA resulted in a loss of DHLA's capacity to inhibit GelB. The DHLA-mediated inhibition of GelB was independent of the zinc concentration in the reaction buffer. DHLA had no inhibitory effect on gelatinase A. Zymographs of activated neutrophil lysates demonstrated that higher concentrations of DHLA also prevent the activation of GelB proenzyme. Bronchoalveolar lavage fluid from mice fed a diet enriched with LA showed significantly increased GelB inhibitory capacity (p = 0.0002 vs. regular diet). We conclude that DHLA can modulate neutrophil-derived GelB activity through direct inhibition of enzyme activity and by preventing the activation of GelB proenzyme.  相似文献   

6.
Rhomboids comprise a family of intramembrane serine proteases that catalyze the cleavage of transmembrane segments within the lipid membrane to achieve a wide range of biological functions. A subset of bacterial rhomboids possesses an N-terminal cytosolic domain that appears to enhance proteolytic activity via an unknown mechanism. Structural analysis of a full-length rhomboid would provide new insights into this mechanism, an objective that solution NMR has the potential to realize. For this purpose we purified the rhomboid from Pseudomonas aeruginosa in a range of membrane-mimetic media, evaluated its functional status in vitro and investigated the NMR spectroscopic properties of these samples. In general, NMR signals could only be observed from the cytosolic domain, and only in detergents that did not support rhomboid activity. In contrast, media that supported rhomboid function did not show these resonances, suggesting an association between the cytosolic domain and the protein-detergent complex. Investigations into the ability of the isolated cytosolic domain to bind detergent micelles revealed a denaturing interaction, whereas no interaction occurred with micelles that supported rhomboid activity. The cytosolic domain also did not show any tendency to interact with lipid bilayers found in small bicelles or vesicles made from Escherichia coli phospholipid extracts. Based on these data we propose that the cytosolic domain does not interact with the lipid membrane, but instead enhances rhomboid activity through interactions with some other part of the rhomboid, such as the catalytic core domain.  相似文献   

7.
Matrix metalloproteinase-9 (MMP-9) is produced by the inactive proform and activated by a proteolytic process. However, it has not been reported to produce the active form directly from cells, which has hindered the research to elicit the physiological roles of this enzyme. In this study, we prepared mutant MMP-9 containing the furin-recognizing sequence in the prodomain and showed that the mutant MMP-9 was secreted as the active form directly from CHO-K1 cells and primary hepatocytes after the gene was transfected. The secreted MMP-9 showed proteolytic activity without further activation and degraded collagen IV in vitro. In addition, the transfection of the gene into the liver resulted in the efficient expression of active MMP-9 in the liver and the serum in vivo.  相似文献   

8.
The matrix metalloproteinases (MMPs) are a family of proteolytic zinc-containing enzymes, which are responsible for the breakdown of the extracellular matrix components in pathological and physiological conditions. They are involved in basement membrane disruption, stroma and blood vessel penetration, metastasis and more recently there is evidence that they participate in tumor growth and angiogenic events. Matrix metalloproteinase 2 and 9 (MMP 2 and 9) belong to the gelatinases, a subgroup of MMPs, and have the capacity to degrade the triple helix type IV collagen of basal lamina of the basement membrane. With the present study, we tried to demonstrate the expression of MMP-9 immunohistochemically, comparatively in benign, premalignant and malignant lesions of the larynx. We studied 154 laryngeal lesions including 55 squamous cell carcinomas, 8 in situ carcinomas, 54 cases of dysplasia (of low and intermediate grade), 13 papillomas and 24 cases of keratosis. Overexpression of MMP 9 was observed in 74.4% and 50% in invasive and in situ squamous cell carcinomas respectively. In dysplastic cases, in papillomas and in keratoses the percentage of overexpression was 62.9%, 61.53% and 54.16% respectively and the expression of MMP-9 was significantly higher in invasive squamous cell carcinomas compared to dysplasias (p=0.000004). Also significantly higher was the expression of MMP-9 in dysplastic cases compared to papillomas (p=0.023). The MMP-9 expression was related neither to survival nor to the other available clinicopathological parameters (tumor size, grade, clinical stage, lymph node status and patient age). In conclusion, our study indicates that the expression of MMP-9 is up-regulated in a stepwise fashion, with two main steps, the first one, when a dysplastic lesion evolves and the next one, when the dysplasia progresses to invasive carcinoma.  相似文献   

9.
Han L  Monné M  Okumura H  Schwend T  Cherry AL  Flot D  Matsuda T  Jovine L 《Cell》2010,143(3):404-415
ZP3, a major component of the zona pellucida (ZP) matrix coating mammalian eggs, is essential for fertilization by acting as sperm receptor. By retaining a propeptide that contains a polymerization-blocking external hydrophobic patch (EHP), we determined the crystal structure of an avian homolog of ZP3 at 2.0 ? resolution. The structure unveils the fold of a complete ZP domain module in a homodimeric arrangement required for secretion and reveals how EHP prevents premature incorporation of ZP3 into the ZP. This suggests mechanisms underlying polymerization and how local structural differences, reflected by alternative disulfide patterns, control the specificity of ZP subunit interaction. Close relative positioning of a conserved O-glycan important for sperm binding and the hypervariable, positively selected C-terminal region of ZP3 suggests a concerted role in the regulation of species-restricted gamete recognition. Alternative conformations of the area around the O-glycan indicate how sperm binding could trigger downstream events via intramolecular signaling.  相似文献   

10.
Matrix metalloproteinases constitute a family of structurally related endopeptidases that are crucial for the normal turnover of the extracellular matrix. Elevated levels of MMP-9 have been demonstrated in synovial fluids of rheumatoid arthritis patients, and a correlation with the severity of the disease has been described. The aim of this study was to explore the impact of MMP-9 expression on joint inflammation and destruction in a model of bacterially induced septic arthritis. MMP-9 knock-out mice and C57Bl6 congenic controls were inoculated intravenously or intra-articularly with Staphylococcus aureus. Arthritis was evaluated clinically and by means of histology. Zymographic analyses were performed to study ex vivo induction of MMP-9 following exposure to S. aureus. The MMP-9 knock-out mice displayed a significantly higher frequency and severity, but not destructivity, of arthritis than did the wild-type mice. The knock-out mice also proved to harbour an increased number of bacteria locally in joints and systemically in kidneys, possibly by impaired extravasation and recruitment of leukocytes and a deficient early defence against infection. Our findings indicate that deficiency in MMP-9 increases the degree of joint inflammation due to decreased bacterial clearance.  相似文献   

11.
To investigate the relevance of gelatinase-B (matrix metalloproteinase 9, MMP-9) in gouty arthritis (GA), we tested the occurrence of MMP-9 in GA patients and cell culture system. Gelatinolytic activity in the synovial fluid (SF) of patients with different kinds of arthritis was assessed by gelatin zymography. A predominant 92-kDa MMP-9 gelatinolytic activity was evident in rheumatoid arthritis (RA) and GA samples, but no activity was observed in osteoarthritis (OA) samples. Among the 53 SF samples (9 RA, 24 GA, and 20 OA) analyzed for MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1) antigen levels by ELISA, MMP-9 antigen levels were elevated tenfold in GA SF compared with OA SF. In addition, GA synovial tissue extracts revealed elevated levels of MMP-9 expression as compared to OA tissue extracts by Western blot and RT-PCR analysis. Immunohistochemical studies demonstrated that MMP-9 immunoreactivity was more intense in GA than in OA synovial tissues. Furthermore, macrophages activation by gouty crystals in vitro was examined. Crystals stimulated MMP-9 gene expression in macrophage cell line and such stimulation was suppressed by PD98059. These findings suggest that the abnormal production of MMP-9 by macrophages is a reflection of the pathological conditions in joints of patients with GA, and that the activation of MMP-9 in the joint is known to play an important role in joint disease.  相似文献   

12.
13.
Abundant attention has focused on synaptotagmin's C2 domains, but less is known about the structure and function of its other regions. Here, we synthesized the N-acetylated, C-end amidated and Cys-palmitated peptide (VLTCCFCICK KCLFKKKNKK K) which includes the fatty acylated cysteine residues in the membrane-affiliated domain of synaptotagmin-1. Fourier-transform infrared spectrometry indicated that this peptide's conformation is influenced by environmental polarity. In artificial bilayer membranes, this peptide exhibited abundant β-structure. Electron microscopy revealed that this peptide also promoted the stacking of liposome membranes. Together these results suggest that the fatty acylated region of synaptotagmin-1 is likely to adopt β-structure in biological membranes. This preference for β-structure versus α-helix has functional implications for the role of synaptotagmin-1 in synaptic vesicle exocytosis.  相似文献   

14.
PSI domains are cysteine-rich modules found in extracellular fragments of hundreds of signaling proteins, including plexins, semaphorins, integrins, and attractins. Here, we report the solution structure of the PSI domain from the human Met receptor, a receptor tyrosine kinase critical for proliferation, motility, and differentiation. The structure represents a cysteine knot with short regions of secondary structure including a three-stranded antiparallel beta-sheet and two alpha-helices. All eight cysteines are involved in disulfide bonds with the pattern consistent with that for the PSI domain from Sema4D. Comparison with the Sema4D structure identifies a structurally conserved core comprising the N-terminal half of the PSI domain. Interestingly, this part links adjacent SEMA and immunoglobulin domains in the Sema4D structure, suggesting that the PSI domain serves as a wedge between propeller and immunoglobulin domains and is responsible for the correct positioning of the ligand-binding site of the receptor.  相似文献   

15.
Chymases, serine proteases exclusively expressed by mast cells, have been implicated in various pathological conditions. However, the basis for these activities is not known, i.e. the in vivo substrate(s) for mast cell chymase has not been identified. In this study we show that mice lacking the chymase mouse mast cell protease 4 (mMCP-4) fail to process pro-matrix metalloprotease 9 (pro-MMP-9) to its active form in vivo, whereas both the pro and active form of MMP-9 was found in tissues of wild type mice. Moreover, the processing of pro-MMP-2 into active enzyme was markedly defective in mMCP-4 null animals. Histological analysis revealed an increase in collagen in the ear tissue of mMCP-4-deficient animals accompanied by increased ear thickness and a higher content of hydroxyproline. Furthermore, both lung and ear tissue from the knock-out animals showed a markedly increased staining for fibronectin. MMP-9 and MMP-2 are known to have a range of important activities, but the mechanisms for their activation in vivo have not been clarified previously. The present study thus indicates a key role for mast cell chymase in the regulation of pro-MMP-2 and -9 activities. Moreover, the results suggest an important role for mast cell chymase in regulating connective tissue homeostasis.  相似文献   

16.
17.
Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a regulatory and effector metalloproteinase in inflammation. TNF-α is an important proinflammatory cytokine and is released by the action of a Zn2+-containing converting enzyme (TACE/ADAM-17). Both metallo-enzymes play important roles during the development of shock syndromes. Combinatorial chemical synthesis and subsequent library deconvolution were previously used to define a peptide inhibitor (Regasepin1) acting, almost to the same degree, on neutrophil collagenase/MMP-8 and MMP-9 in vitro, and protecting mice against lethal endotoxinemia in vivo. We have now extended this approach by incorporating D-form amino acids and residues preferred by TACE. A new peptide library was designed and synthesized, and by deconvolution new peptide inhibitors were defined. These included a TACE-specific inhibitor, an MMP-9- specific inhibitor, and inhibitors for both enzymes.  相似文献   

18.
Mast cells are key effectors in the pathogenesis of inflammatory and tissue destructive diseases such as rheumatoid arthritis (RA). These cells contain specialized secretory granules loaded with bioactive molecules including cytokines, growth factors, and proteases that are released upon activation. This study investigated the regulation of matrix metalloproteinase MMP-9 (gelatinase B) in human mast cells by cytokines that are known to be involved in the pathogenesis of RA. Immunohistochemical staining of synovial tissue showed abundant expression of MMP-9 by synovial tissue mast cells in patients with RA but not in normal controls. The expression, activity, and production of MMP-9 in mast cells was confirmed by RT-PCR, zymography, and Western blotting using cord blood-derived human mast cells (CB-HMC). Treatment of CB-HMC with TNF-alpha significantly increased the expression of MMP-9 mRNA and up-regulated the activity of MMP-9 in a time- and dose-dependent manner. By contrast, IFN-gamma inhibited MMP-9 mRNA and protein expression. The cytokine-mediated regulation of MMP-9 was also apparent in the human mast cell line (HMC-1) and in mouse bone marrow-derived mast cells. Furthermore, TNF-alpha significantly increased the invasiveness of CB-HMC across Matrigel-coated membranes while the addition of IFN-gamma, rTIMP-1, or pharmacological MMP inhibitors significantly reduced this process. These observations suggest that MMP-9 is not a stored product in mast cells but these cells are capable of producing this enzyme under inflammatory conditions that may facilitate the migration of mast cell progenitors to sites of inflammation and may also contribute to local tissue damage.  相似文献   

19.
Gelatinase B or matrix metalloproteinase-9 is involved in inflammation and in autoimmune and vascular diseases. In contrast to the constitutive and homeostatic matrix metalloproteinase-2, matrix metalloproteinase-9 is an inducible enzyme. Furthermore, it needs tight regulation, and a major control mechanism of its enzymatic activity is the activation of the latent enzyme by proteolysis of the 87 residue propeptide. Activated matrix metalloproteinase-9 is detected in many vascular or hematological disease states, including in an experimental model for cerebral malaria with Plasmodium berghei ANKA. However, insight into its activation mechanism is incomplete. In view of the association with hemorrhagic and hemolytic diseases, it was studied whether and how hemoglobin and its derivatives might activate pro-matrix metalloproteinase-9. Incubation of matrix metalloproteinase-9 with hemin or beta-hematin, the core constituent of hemozoin or malaria pigment, leads to differential autocatalysis of the propeptide, mediated by allosteric interaction with the hemopexin domain. The cleavage catalyzed by beta-hematin coincides with the first cleavage by stromelysin-1/matrix metalloproteinase-3, and preincubation of matrix metalloproteinase-9 with beta-hematin enhances the activation rate by matrix metalloproteinase-3 at least 6-fold. These findings suggest that reduction of hemorrhage and hemolysis might prevent matrix metalloproteinase-9-mediated inflammatory and vascular damages.  相似文献   

20.
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号