首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A late phase of HoxD activation is crucial for the patterning and growth of distal structures across the anterior-posterior (A-P) limb axis of mammals. Polycomb complexes and chromatin compaction have been shown to regulate Hox loci along the main body axis in embryonic development, but the extent to which they have a role in limb-specific HoxD expression, an evolutionary adaptation defined by the activity of distal enhancer elements that drive expression of 5' Hoxd genes, has yet to be fully elucidated. We reveal two levels of chromatin topology that differentiate distal limb A-P HoxD activity. Using both immortalised cell lines derived from posterior and anterior regions of distal E10.5 mouse limb buds, and analysis in E10.5 dissected limb buds themselves, we show that there is a loss of polycomb-catalysed H3K27me3 histone modification and a chromatin decompaction over HoxD in the distal posterior limb compared with anterior. Moreover, we show that the global control region (GCR) long-range enhancer spatially colocalises with the 5' HoxD genomic region specifically in the distal posterior limb. This is consistent with the formation of a chromatin loop between 5' HoxD and the GCR regulatory module at the time and place of distal limb bud development when the GCR participates in initiating Hoxd gene quantitative collinearity and Hoxd13 expression. This is the first example of A-P differences in chromatin compaction and chromatin looping in the development of the mammalian secondary body axis (limb).  相似文献   

2.
3.
4.
5.
The posterior HoxA and HoxD genes are essential in appendicular development. Studies have demonstrated that a "distal limb enhancer," remotely located upstream of the HoxD complex, is required to drive embryonic autopod expression of the posterior Hox genes as well as the two additional non-Hox genes in the region: Evx2 and Lnp. Our work demonstrates a similar mode of regulation for Hoxa13 and four upstream genes: Evx1, Hibadh, Tax1bp, and Jaz1. These genes all show embryonic (E11.5-E13.5) distal limb and genital bud expression, suggesting the existence of a nearby enhancer influencing the expression of a domain of genes. Comparative sequence analysis between homologous human and mouse genomic sequence upstream of Hoxa13 revealed a remote 2.25-kb conserved noncoding sequence (mmA13CNS) within the fourth intron of the Hibadh gene. mmA13CNS shares a common 131-bp core identity within a conserved noncoding sequence upstream of Hoxd13, which is located within the previously identified distal limb enhancer critical region. To test the function of this conserved sequence, we created mmA13CNS-Hsp86-lacZ transgenic mice. mmA13CNS directed a wide range of tissue expression, including the central nervous system, developing olfactory tissue, limb, and genital bud. Limb and genital bud expression directed by mmA13CNS is not identical to the patterns exhibited by Hoxa13/Evx1/Hibadh/Tax1bp1/Jaz1, suggesting that mmA13CNS is not sufficient to fully recapitulate their expression in those tissues. The Evx1- and Evx2-like central nervous system expression observed in these mice suggests that the long-range regulatory element(s) for the Hox cluster existed before the cluster duplication.  相似文献   

6.
7.
Vertebrate gene members of the HoxD complex are essential for proper development of the appendicular skeletons. Inactivation of these genes induces severe alterations in the size and number of bony elements. Evx-2, a gene related to the Drosophila even-skipped (eve) gene, is located close to Hoxd-13 and is expressed in limbs like the neighbouring Hoxd genes. To investigate whether this tight linkage reflects a functional similarity, we produced a null allele of Evx-2. Furthermore, and because Hoxd-13 function is prevalent over that of nearby Hoxd genes, we generated two different double mutant loci wherein both Evx-2 and Hoxd-13 were inactivated in cis. The analysis of these various genetic configurations revealed the important function of Evx-2 during the development of the autopod as well as its genetic interaction with Hoxd-13. These results show that, in limbs, Evx-2 functions like a Hoxd gene. A potential evolutionary scenario is discussed, in which Evx-2 was recruited by the HoxD complex in conjunction with the emergence of digits in an ancestral tetrapod.  相似文献   

8.
Bat forelimbs are highly specialized for sustained flight, providing a unique model to explore the genetic programs that regulate vertebrate limb diversity. Hoxd9-13 genes are important regulators of stylopodium, zeugopodium, and autopodium development and thus evolutionary changes in their expression profiles and biochemical activities may contribute to divergent limb morphologies in vertebrates. We have isolated the genomic region that includes Hoxd12 and Hoxd13 from Carollia perspicillata, the short-tailed fruit bat. The bat Hoxd13 gene encodes a protein that shares 95% identity with human and mouse HOXD13. The expression pattern of bat Hoxd13 mRNA during limb development was compared with that of mouse. In bat and mouse hindlimbs, the expression patterns of Hoxd13 are relatively similar. However, although the forelimb Hoxd13 expression patterns in both organisms during early limb bud stages are similar, at later stages they diverge; the anterior expression boundary of bat Hoxd13 is posterior-shifted relative to the mouse. These findings, compared with the Hoxd13 expression profiles of other vertebrates, suggest that divergent Hoxd13 expression patterns may contribute to limb morphological variation.  相似文献   

9.
10.
11.
Hox genes encode homeodomain-containing proteins that control embryonic development in multiple contexts. Up to 30 Hox genes, distributed among all four clusters, are expressed during mammalian kidney morphogenesis, but functional redundancy between them has made a detailed functional account difficult to achieve. We have investigated the role of the HoxD cluster through comparative molecular embryological analysis of a set of mouse strains carrying targeted genomic rearrangements such as deletions, duplications, and inversions. This analysis allowed us to uncover and genetically dissect the complex role of the HoxD cluster. Regulation of metanephric mesenchyme-ureteric bud interactions and maintenance of structural integrity of tubular epithelia are differentially controlled by some Hoxd genes during renal development, consistent with their specific expression profiles. We also provide evidence for a kidney-specific form of colinearity that underlies the differential expression of two distinct sets of genes located on both sides and overlapping at the Hoxd9 locus. These insights further our knowledge of the genetic control of kidney morphogenesis and may contribute to understanding certain congenital kidney malformations, including polycystic kidney disease and renal hypoplasia.  相似文献   

12.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that involve higher order chromatin structure. Earlier studies, primarily in Drosophila, have illustrated the role of chromatin-mediated regulatory processes, which include chromatin domain boundaries that separate the domains of distinct regulatory features. In the mouse HoxD complex, Evx2 and Hoxd13 are located ~ 9 kb apart but have clearly distinguishable temporal and spatial expression patterns. Here, we report the characterization of a chromatin domain boundary element from the Evx2-Hoxd13 region that functions in Drosophila as well as in mammalian cells. We show that the Evx2-Hoxd13 region has sequences conserved across vertebrate species including a GA repeat motif and that the Evx2-Hoxd13 boundary activity in Drosophila is dependent on GAGA factor that binds to the GA repeat motif. These results show that Hox genes are regulated by chromatin mediated mechanisms and highlight the early origin and functional conservation of such chromatin elements.  相似文献   

13.
14.
15.
16.
17.
SUMMARY Duplications of Hox gene clusters have been suggested as a mechanism whereby new Hox functions can be developed while preserving critical ancestral roles. However, in tetrapods, particularly in mammals, there is great variability in limb structure morphologies that are known to be affected by Hox genes without further Hox cluster duplications. The lack of further duplications suggests that if Hox genes have played a direct role in the morphological elaboration of tetrapod limbs, the changes must have come about from Hox protein sequence changes or from changes regarding the amount, time, and place of Hox gene expression. To investigate whether such changes to Hox genes could play a role in limb elaboration, we examined the HoxD locus in bats, which have both highly elaborated fore‐ and hindlimbs. We found that while the Chiropteran HoxD13 protein was highly conserved, there was an expansion of HoxD13 expression in the posterior portion of the Chiropteran forelimb and into the leading edge of the wing membrane. We were also able to uncover a number of unique lineage‐specific sequence changes to a known HoxD limb enhancer, the Global Control Region (GCR). Further, mouse transgenic assays showed that the Chiropteran GCR has new limb enhancer activity domains beyond that reported for the Human GCR. These results suggest that modulation of Hox gene expression may be a mechanism for effecting morphological change in lineage‐specific manner while maintaining ancestral constraints and cluster integrity.  相似文献   

18.
Idiopathic congenital clubfoot (CCF) is a type of congenital foot malformation, and previous studies using the extended transmission disequilibrium testing (ETDT) analysis have confirmed the HOXD13 gene as the susceptible gene of CCF. This study aimed to verify whether Hoxd13 directly regulates skeletal muscle LIM protein 1 (Fhl1) expression during limb development in rat embryo, which will serve as a basis for comprehending etiological research of idiopathic CCF. Immunofluorescence staining was utilized to detect Hoxd13 and Fhl1 expression in 12.5d rat embryo, while luciferase assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP) assay were used to confirm the interaction between the two genes. Both Hoxd13 and Fhl1 were expressed in the interdigital tissues of E12.5 rat embryo. Luciferase assay and EMSA identified a novel promoter region of Fhl1 that directly interacts with Hoxd13. ChIP of the Hoxd13-Fhl1 promoter complex from the developing limb confirmed that endogenous Hoxd13 interacts with this region. Thus, Hoxd13 directly regulates Fhl1 expression in rat embryo. These findings suggest that HOXD13 may regulate the expression of FHL1 in the development of idiopathic CCF.  相似文献   

19.
The five most 5' HoxD genes, which are related to the Drosophila Abd-B gene, play an important role in patterning axial and appendicular skeletal elements and the nervous system of developing vertebrate embryos. Three of these genes, Hoxd11, Hoxd12, and Hoxd13, act synergistically to pattern the hindlimb autopod. In this study, we examine the combined effects of two additional 5' HoxD genes, Hoxd9 and Hoxd10. Both of these genes are expressed posteriorly in overlapping domains in the developing neural tube and axial mesoderm as well as in developing limbs. Locomotor behavior in animals carrying a double mutation in these two genes was altered; these alterations included changes in gait, mobility, and adduction. Morphological analysis showed alterations in axial and appendicular skeletal structure, hindlimb peripheral nerve organization and projection, and distal hindlimb musculature. These morphological alterations are likely to provide the substrate for the observed alterations in locomotor behavior. The alterations observed in double-mutant mice are distinct from the phenotypes observed in mice carrying single mutations in either gene, but exhibit most of the features of both individual phenotypes. This suggests that the combined activity of two adjacent Hox genes provides more patterning information than activity of each gene alone. These observations support the idea that adjacent Hox genes with overlapping expression patterns may interact functionally to provide patterning information to the same regions of developing mouse embryos.  相似文献   

20.
The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号