首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that oxidative stress is enhanced in diabetes. However, the major in vivo source of oxidative stress is not clear. Here we show that vascular NAD(P)H oxidase may be a major source of oxidative stress in diabetic and obese models. In vivo electron spin resonance (ESR)/spin probe was used to evaluate systemic oxidative stress in vivo. The signal decay rate of the spin probe (spin clearance rate; SpCR) significantly increased in streptozotocin-induced diabetic rats 2 weeks after the onset of diabetes. This increase was completely normalized by treatment with the antioxidants alpha-tocopherol (40 mg/kg) and superoxide dismutase (5000 units/kg), and was significantly inhibited by treatment with a PKC-specific inhibitor, CGP41251 (50 mg/kg), and a NAD(P)H oxidase inhibitor, apocynin (5 mg/kg). Both obese ob/ob mice (10 weeks old) with mild hyperglycemia and Zucker fatty rats (11 weeks old) with normoglycemia exhibited significantly increased SpCR as compared with controls. Again, this increase was inhibited by treatment with both CGP41251 and apocynin. Oral administration of insulin sensitizer, pioglitazone (10 mg/kg), for 7 days also completely normalized SpCR values. These results suggest that vascular NAD(P)H oxidase may be a major source of increased oxidative stress in diabetes and obesity.  相似文献   

2.
In the early stage of atherosclerosis, macrophages take up chemically modified low density lipoproteins (LDL) through the scavenger receptors, leading to foam cell formation in atherosclerotic lesions. To get insight into a role of the scavenger receptors in diabetes-enhanced atherosclerotic complications, the effects on class A scavenger receptor (SR-A) of high glucose exposure in vitro as well as the diabetic conditions in vivo were determined in the present study. The in vitro experiments demonstrated that high glucose exposure to human monocyte-derived macrophages led to an increased SR-A expression with a concomitant increase in the endocytic uptake of acetylated LDL and oxidized LDL. The endocytic process was significantly suppressed by an anti-SR-A neutralizing antibody. Stability analyses revealed a significant increased stability of SR-A at a mRNA level but not a protein level, indicating that high glucose-induced up-regulation of SR-A is due largely to increased stability of SR-A mRNA. High glucose-enhanced SR-A expression was prevented by protein kinase C and NAD(P)H oxidase inhibitors as well as antioxidants. High glucose-enhanced production of intracellular peroxides was visualized in these cells, which was attenuated by an antioxidant. The in vivo experiments demonstrated that peritoneal macrophages from streptozotocin-induced diabetic mice increased SR-A expression when compared with those from nondiabetic mice. Endocytic degradation of acetylated LDL and oxidized LDL were also increased with these macrophages but not with the corresponding macrophages from diabetic SR-A knock-out mice. These in vitro and in vivo results probably suggest that reactive oxygen species generated from a protein kinase C-dependent NAD(P)H oxidase pathway plays a role in the high glucose-induced up-regulation of SR-A, leading to the increased endocytic degradation of modified LDL for foam cell formation. This could be one mechanism for an increased rate of atherosclerosis in patients with diabetes.  相似文献   

3.
Reactive oxygen species-scavenging enzyme Cu/Zn superoxide dismutase (SOD) regulated by peroxisome proliferator-activated receptors (PPARs) plays an important role in vascular responsiveness. However, it remains unknown whether statin restores vascular dysfunction through the activation of reactive oxygen species-scavenging enzymes in vivo. We hypothesized that pitavastatin restores vascular function by modulating oxidative stress through the activation of Cu/ZnSOD and PPAR-gamma in hypercholesterolemia. New Zealand White male rabbits were fed either normal chow or a 1% cholesterol (CHO) diet for 14 wk. After the first 7 wk, the CHO-fed rabbits were further divided into three groups: those fed with CHO feed only (HC), those additionally given pitavastatin, and those additionally given an antioxidant, probucol. The extent of atherosclerosis was assessed by examining aortic stiffness. When compared with the HC group, both the pitavastatin and probucol groups showed improved aortic stiffness by reducing aortic levels of reactive oxidative stress, nitrotyrosine, and collagen, without affecting serum cholesterol or blood pressure levels. Pitavastatin restored both Cu/ZnSOD activity (P < 0.005) and PPAR-gamma expression and activity (P < 0.01) and inhibited NAD(P)H oxidase activity (P < 0.0001) in the aorta, whereas probucol inhibited NAD(P)H oxidase activity more than did pitavastatin (P < 0.0005) without affecting Cu/ZnSOD activity or PPAR-gamma expression and activity. Importantly, Cu/ZnSOD activity was positively correlated with the PPAR-gamma activity in the aorta (P < 0.005), both of which were negatively correlated with aortic stiffness (P < 0.05). Vascular Cu/ZnSOD and PPAR-gamma may play a crucial role in the antiatherogenic effects of pitavastatin in hypercholesterolemia in vivo.  相似文献   

4.
This study was undertaken to reveal the role of NAD(P)H oxidase in increased oxidative stress in islets of Type 2 diabetes. Immunostaining analysis showed that staining intensities of NAD(P)H oxidase components, gp91phox and p22phox, significantly increased in islets of animal models of Type 2 diabetes, OLETF rats (60 weeks of age) and db/db mice (14 weeks of age), compared with age-matched controls, respectively, correlating with increased levels of oxidative stress marker, 8-hydroxy-deoxyguanosine or 4-hydroxy-2-nonenal modified protein. In db/db mice, oral administration of angiotensin II Type 1 receptor antagonist valsartan (5 mg/kg) for 4 weeks significantly attenuated the increased expression of gp91phox and p22phox together with inhibition of oxidative stress and partially restored decreased insulin contents in islets. Angiotensin II-related increased expression of NAD(P)H oxidase may play an important role in increased oxidative stress in islets of Type 2 diabetes. This mechanism may be a novel therapeutic target for preventing beta-cell damage.  相似文献   

5.
Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.  相似文献   

6.
We have recently shown that aorta from streptozotocin (STZ)-induced diabetic rats and A10 vascular smooth muscle cells (VSMCs) exposed to high glucose exhibited decreased levels of inhibitory guanine nucleotide regulatory protein (Gi)alpha proteins. In the present studies, we investigated the implication of oxidative stress in the hyperglycemia/diabetes-induced decreased expression of the Gialpha protein and adenylyl cyclase signaling in VSMCs by using antioxidants. The levels of Gialpha proteins were significantly decreased in A10 VSMCs exposed to high glucose and in aortic VSMCs from STZ-diabetic rats compared with control cells and were restored to control levels by antioxidants. In addition, (111)Mn-tetralis(benzoic acid porphyrin) and uric acid, scavengers of peroxynitrite, and NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase but not catalase, also restored the high glucose-induced decreased expression of Gialpha proteins to the control levels in A10 VSMCs. Furthermore, the enhanced production of superoxide anion (O2-) and increased activity of NADPH oxidase in these cells were also restored to control levels by diphenyleneiodonium, an inhibitor of NADPH oxidase. In addition, the diminished inhibition of adenylyl cyclase activity by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPgammaS as well as the enhanced stimulation of adenylyl cyclase by stimulatory agonists in hyperglycemic cells were restored to control levels by antioxidant treatments. These results suggest that high glucose-induced decreased levels of Gialpha proteins and associated signaling in A10 VSMCs may be attributed to the enhanced oxidative stress due to augmented levels of peroxynitrite and not to H2O2.  相似文献   

7.
Reduced levels of cGMP-dependent protein kinase I (PKG-I) in vasculature have been shown to contribute to diabetic vascular dysfunctions. However, the underlying mechanisms remain unknown. In this report, using primary rat aortic smooth muscle cells (VSMC), we investigated the mechanisms of glucose-mediated regulation of PKG-I expression. Our data showed that high glucose (30 mM glucose) exposure significantly reduced PKG-I production (protein and mRNA levels) as well as PKG-I activity in cultured VSMC. Glucose-mediated decreases in PKG-I levels were inhibited by a superoxide scavenger (tempol) or NAD(P)H oxidase inhibitors (diphenylene iodonium or apocynin). High glucose exposure time-dependently increased superoxide production in VSMC, which was abolished by tempol or apocynin treatment, but not by other inhibitors of superoxide-producing enzymes (L-NAME, rotenone, or oxypurinol). Total protein levels and phosphorylated levels of p47phox (an NADPH oxidase subunit) were increased in VSMC after high glucose exposure. Transfection of cells with siRNA-p47phox abolished glucose-induced superoxide production and restored PKG-I protein levels in VSMC. Treatment of cells with PKC inhibitor prevented glucose-induced p47phox expression/phosphorylation and superoxide production and restored the PKG-I levels. Decreased PKG-I protein levels were also found in femoral arteries from diabetic mice, which were associated with the decreased DEA-NONOate-induced vasorelaxation. Taken together, the present results suggest that glucose-mediated down-regulation of PKG-I expression in VSMC occurs through PKC-dependent activation of NAD(P)H oxidase-derived superoxide production, contributing to diabetes-associated vessel dysfunctions.  相似文献   

8.
Hyperglycemia is well-recognized and has long-term complications in diabetes mellitus and diabetic nephropathy. In podocytes, the main component of the glomerular barrier, overproduction of reactive oxygen species (ROS) in the presence of high glucose induces dysfunction and increases excretion of albumin in urine. This suggests an impaired antioxidant defense system has a role in the pathogenesis of diabetic nephropathy. We studied expression of NAD(P)H oxidase subunits by Western blotting and immunofluorescence and the activities of the oxidant enzyme, NAD(P)H, and antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), in mouse podocytes cultured in a high glucose concentration (30 mM). We found long-term (3 and 5 days) exposure of mouse podocytes to high glucose concentrations caused oxidative stress, as evidenced by increased expression of Nox4 and activities of NAD(P)H oxidase (Δ 182%) and SOD (Δ 39%) and decreased activities of GPx (Δ -40%) and CAT (Δ -35%). These biochemical changes were accompanied by a rise in intracellular ROS production and accumulation of hydrogen peroxide in extracellular space. The role of Nox4 in ROS generation was confirmed with Nox4 siRNA. In conclusion, high glucose concentration affects the oxidant-antioxidant balance in mouse podocytes, resulting in enhanced generation of superoxide anions and its attenuated metabolism. These observations suggest free radicals may play an important role in the pathogenesis of diabetic nephropathy.  相似文献   

9.
Yun MR  Im DS  Lee JS  Son SM  Sung SM  Bae SS  Kim CD 《Life sciences》2006,78(22):2608-2614
Endothelial expression of E-selectin is enhanced in diabetic patients with retinopathy, however, the underlying mechanisms are unclear. Therefore, this study was aimed to determine if endothelial expression of E-selectin is stimulated with serum from type 2 diabetic patients with retinopathy, and whether this process is related to NAD(P)H oxidase-derived oxidative stress. Serum was obtained from type 2 diabetic patients with (T2DR) or without (T2DM) retinopathy, and age-matched non-diabetic healthy person (Control). Serum was added to in vitro-grown human coronary artery endothelial cells (HCAEC), after which E-selectin expression, reactive oxygen species (ROS) production, and NAD(P)H oxidase activity were measured. Serum from T2DR induced a significantly higher expression of E-selectin than serum from T2DM and control in association with an enhanced production of ROS in HCAEC. T2DR serum enhanced E-selectin expression in a ROS-dependent manner since this process was significantly attenuated not only by tiron (1 mM), a superoxide scavenger, but also by DPI (10 micromol/L) and apocynin (100 micromol/L), inhibitors of NAD(P)H oxidase. Furthermore, the activity of NADH oxidase was markedly increased by T2DR serum, and this was accompanied by the enhanced membrane translocation of p47phox, a cytosolic subunit of NAD(P)H oxidase. These findings suggest that serum from T2DR induced up-regulation of E-selectin expression in HCAEC, and this process might be dependent on activation of endothelial NADH oxidase via an enhanced membrane translocation of p47phox.  相似文献   

10.
We have previously reported that in streptozotocin-induced diabetic rats that increased formation of superoxide and peroxynitrite is associated with impairment in vascular relaxation in epineurial arterioles of the sciatic nerve. In this study we demonstrate that pretreating epineurial arterioles from diabetic rats in vitro with alpha-lipoic acid, dihydrolipoic acid, tempol or arginine restores acetylcholine-mediated vascular relaxation to near the reactivity observed in vessels from control rats. Suggesting that increased oxidative stress and reduction in nitric oxide availability is partially responsible for the impairment in endothelium-dependent vasodilation observed in epineurial arterioles from diabetic rats. In contrast, pretreating epineurial arterioles from diabetic rats with aminoguanidine or allopurinol had no effect. Studies designed to investigate the source of superoxide formation provided results suggesting that complex I of the mitochondrial electron transport chain and NAD(P)H oxidase are responsible for the increase in superoxide formation observed with epineurial arterioles from the sciatic nerve. Pretreating epineurial arterioles from diabetic rats with the protein kinase C inhibitor bisindolymaleimide I (GF 109203X) improved acetylcholine-mediated vascular relaxation but did not prevent the increase in superoxide formation suggesting that activation of protein kinase C by oxidative stress is downstream of superoxide formation. These studies imply that increased superoxide formation via the mitochondrial electron transport chain and perhaps NAD(P)H oxidase is partially responsible for reduced vascular reactivity observed in epineurial arterioles of the sciatic nerve from diabetic rats.  相似文献   

11.
Hyperglycemia is a causal factor in the development of diabetic vascular complications including impaired vascular smooth muscle contractility and increased cell proliferation. The present study was designed to investigate the effects of Sasa borealis water-extract (SBwE) on chronic hyperglycemia-induced oxidative stress and apoptosis in human umbilical endothelial cells (HUVEC). HUVEC were cultured in 5.5 mM low glucose, 5.5 mM glucose plus 27.5 mM mannitol as an osmotic control, or 33 mM high glucose for 5 days in the absence and presence of 1-30 microg/ ml SBwE. Caspase-3 activation and Annexin V staining revealed chronic high glucose-induced endothelial apoptotic toxicity with a generation of oxidants detected by DCF-fluorescence, and these effects were reversed by SBwE at > or =1 microg/ml in a dose-dependent manner. Cytoprotective SBwE substantially reduced the sustained high glucose-induced expression of endothelial nitric oxide synthase and attenuated the formation of peroxynitrite radicals. The suppressive effects of SBwE were most likely mediated through blunting activation of PKC beta 2 and NADPH oxidase promoted by high glucose. In addition, this bamboo extract modulated the high glucose-triggered mitogen-activated protein kinase-dependent upregulation of heat-shock proteins. Our results suggest that SBwE suppressed these detrimental effects caused by PKC-dependent peroxynitrite formation via activation of NADPH oxidase and induction of nitric oxide synthase and heat-shock protein family that may be essential mechanisms responsible for increased apoptotic oxidative stress in diabetic vascular complications. Moreover, the blockade of high glucose-elicited heat-shock protein induction appeared to be responsible for SBwE-alleviated endothelial apoptosis. Therefore, SBwE may be a therapeutic agent for the prevention and treatment of diabetic endothelial dysfunction and related complications.  相似文献   

12.
Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio.  相似文献   

13.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

14.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

15.
16.
The effect of atorvastatin (Lipitor) on diabetes-induced changes in plasma lipids, oxidative stress and the ability of aortic tissues to generate prostacyclin was studied in streptozotocin diabetic rats. In diabetic rats, plasma total cholesterol, triglycerides and serum glucose significantly increased compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not affect hyperglycemia but significantly reduced plasma total cholesterol and triglycerides compared to diabetic rats. The oxidative stress markers urinary isoprostane, liver thiobarbituric acid reactive substances (TBARS) and plasma protein carbonyl content significantly increased in diabetic rats compared to nondiabetic rats. Atorvastatin admnistration to diabetic rats significantly reduced oxidative stress levels compared to diabetic rats, but urinary isoprostane and liver TBARS remained significantly higher than nondiabetic rats. Prostacyclin (PGI(2)) generation by aortic tissues significantly decreased in diabetic rats compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not reverse that inhibition. These results were discussed in the light of the possible effects of hyperglycemia and statins on NAD(P)H-oxidase and cyclooxygenase-2 activities and the genetic difference between rats and other mammals regarding the level of vascular superoxide dismutase (SOD) activity.  相似文献   

17.
Angiotensin II (ANG II)-induced oxidative stress has been known to be involved in the pathogenesis of cardiovascular diseases. We have reported that the oxidative stress in skeletal muscle can limit exercise capacity in mice (16). We thus hypothesized that ANG II could impair the skeletal muscle energy metabolism and limit exercise capacity via enhancing oxidative stress. ANG II (50 ng·kg(-1)·min(-1)) or vehicle was infused into male C57BL/6J mice for 7 days via subcutaneously implanted osmotic minipumps. ANG II did not alter body weight, skeletal muscle weight, blood pressure, cardiac structure, or function. Mice were treadmill tested, and expired gases were analyzed. The work to exhaustion (vertical distance × body weight) and peak oxygen uptake were significantly decreased in ANG II compared with vehicle. In mitochondria isolated from skeletal muscle, ADP-dependent respiration was comparable between ANG II and vehicle, but ADP-independent respiration was significantly increased in ANG II. Furthermore, complex I and III activities were decreased in ANG II. NAD(P)H oxidase activity and superoxide production by lucigenin chemiluminescence were significantly increased in skeletal muscle from ANG II mice. Treatment of ANG II mice with apocynin (10 mmol/l in drinking water), an inhibitor of NAD(P)H oxidase activation, completely inhibited NAD(P)H oxidase activity and improved exercise capacity, mitochondrial respiration, and complex activities in skeletal muscle. ANG II-induced oxidative stress can impair mitochondrial respiration in skeletal muscle and limit exercise capacity.  相似文献   

18.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

19.
The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.  相似文献   

20.
We studied the relationship among endothelial function, oxidative stress, and phenylephrine (PE; alpha(1)-adrenoceptor agonist)-induced contraction in mesenteric arteries from high-cholesterol (HC)-diet-fed mice. In HC mice (vs age-matched normal-diet-fed mice): (1) PE-induced contraction in endothelium-intact rings was enhanced (endothelial denudation increased contraction in "normal-diet" rings, but did not enhance it further in "HC" rings); (2) the enhanced PE-induced contraction was further enhanced in the presence of N(G)-nitro-L-arginine (L-NNA; nitric oxide synthase inhibitor) or L-NNA plus indomethacin (cyclooxygenase inhibitor) [to preserve endothelium-derived hyperpolarizing factor (EDHF)], but unchanged in the presence of charybdotoxin plus apamin (to block EDHF); (3) ACh-induced EDHF-type relaxation was reduced; and (4) oxidative stress [indicated by the plasma 8-isoprostane level (reliable systemic marker) and aortic superoxide production] was greater. In HC mice, PE-induced contraction was normalized by apocynin [NAD(P)H oxidase inhibitor] or tempol (superoxide dismutase mimetic), but enhanced by NADH [NAD(P)H oxidase substrate]. Oral dietary supplementation with apocynin (30 mg/kg/day for 4 weeks) corrected the above abnormalities. Hence: (1) PE-induced contraction is modulated by the endothelium, and the enhanced contractility in HC mice results from defective EDHF signaling and elevated oxidative stress, and (2) apocynin normalizes PE-induced contraction in HC mice by improving EDHF signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号