首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using fluorescent Ca2+ indicator fura-2 and whole-cell patch-clamp techniques, we examined the effect of 2-nicotinamidoethyl nitrate (nicorandil) on the intracellular free Ca2+ concentration ([Ca2+]i) and electrical properties in single guinea pig ventricular myocytes. Nicorandil (10 nM approximately 1 mM) reduced the resting level [Ca2+]i monitored as fura-2 fluorescence ratio in a concentration-dependent manner. Dibutyryl guanosine 3':5'-cyclic monophosphate (cyclic GMP), a membrane permeable cyclic GMP analogue, mimicked the nicorandil action. Neither application of caffeine (10 mM) nor deprivation of extracellular Na+ ions could prevent the nicorandil action on [Ca2+]i. In contrast, the nicorandil effect was virtually blocked by sodium orthovanadate (40 microM), a Ca2+ pumping ATPase inhibitor. During electrophysiological experiments, nicorandil shortened action potential durations (205 +/- 80 ms to 153 +/- 76 ms) by increasing a glibenclamide-sensitive outward K+ conductance. However, the drug produced little hyperpolarization (approximately 2 mV) because the resting potential of ventricular myocytes was close to the K+ equilibrium potential. The involvement of voltage-dependent Ca-channel current and Na-Ca exchanger was considered to be minimal under physiological conditions. It is thus concluded that nicorandil decreases basal [Ca2+]i via cyclic GMP-mediated activation of the plasma membrane Ca2+ pump in guinea pig ventricular myocytes.  相似文献   

2.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

3.
Oxygen-free radicals are thought to be a major cause of beta-cell dysfunction in diabetic animals induced by alloxan or streptozotocin. We evaluated the effect of H2O2 on cytosolic Ca2+ concentration ([Ca2+]i) and the activity of ATP-sensitive potassium (K+ATP) channels in isolated rat pancreatic beta-cells using microfluorometry and patch clamp techniques. Exposure to 0.1 mM H2O2 in the presence of 2.8 mM glucose increased [Ca2+]i from 114.3+/-15.4 nM to 531.1+/-71.9 nM (n=6) and also increased frequency of K+ATP channel openings. The intensity of NAD(P)H autofluorescence was conversely reduced, suggesting that H2O2 inhibited the cellular metabolism. These three types of cellular parameters were reversed to the control level on washout of H2O2, followed by a transient increase in [Ca2+]i, the transient inhibition of K+ATP channels associated with action currents and increase of the NAD(P)H intensity with an overshoot. In the absence of external Ca2+, 0.1 mM H2O2 increased [Ca2+]i from 88.8+/-7.2 nM to 134.6+/-8.3 nM. Magnitude of [Ca2+]i increase induced by 0.1 mM H2O2 was decreased after treatment of cells with 0.5 mM thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pump (45.8+/-4.9 nM vs 15.0+/-4.8 nM). Small increase in [Ca2+]i in response to an increase of external Ca2+ from zero to 2 mM was further facilitated by 0.1 mM H2O2 (330.5+/-122.7 nM). We concluded that H2O2 not only activates K+ATP channels in association with metabolic inhibition, but also increases partly the Ca2+ permeability of the thapsigargin-sensitive intracellular stores and of the plasma membrane in pancreatic beta-cells.  相似文献   

4.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

5.
The secretion of parathyroid hormone (PTH) is suppressed in bovine parathyroid cells by raised extracellular [Ca2+], and 12-0-tetradecanoyl-phorbol-13-acetate (TPA) stimulates the release of PTH from cells suppressed by high extracellular [Ca2+]. Extracellular and cytosolic free [Ca2+] are proportionally related in intact cells. To assess the role of cytosolic free [Ca2+] on PTH secretion, bovine parathyroid cells were rendered permeable by brief exposure to an intense electric field. PTH secretion was comparable at 40 nM, 500 nM, 5 microM, 28 microM, 0.5 mM and 2 mM [Ca2+] (release of total cellular PTH 3.7 +/- 0.5%, 3.9 +/- 0.4%, 3.4% +/- 0.3%, 3.9 +/- 0.4%, 3.1 +/- 0.3%, 3.5 +/- 0.7%, respectively), but the secretion was stimulated twofold (P less than 0.05 vs. control) in a dose and ATP dependent manner with TPA (100 nM) and cyclic AMP (1 mM). As a result, free [Ca2+] in the range of those observed in intact cells during regulation of PTH secretion by changes of extracellular [Ca2+] did not affect the release of PTH in permeabilized cells. The [Ca2+] independent stimulation of PTH release by TPA and cyclic AMP indicates that changes of cytosolic free [Ca2+] may represent a secondary event not related to the regulation of PTH secretion.  相似文献   

6.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells.  相似文献   

7.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

8.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

9.
Dual wavelength microfluorometry was used to characterize the changes in cytosolic free Ca2+ concentration [( Ca2+]i) in individual cultured rat aortic vascular smooth muscle cells (VSMC). Angiotensin II (ANG II) at 10(-8) M induced a transient rise in [Ca2+]i from 43 +/- 2 to 245 +/- 23 nM, lasting for approximately 60 s (n = 42). In half of the population, discrete oscillations in [Ca2+]i of smaller amplitude occurred after the initial [Ca2+]i peak, with a period of 58 +/- 8 s and a maximum height of 132 +/- 24 nM. A similar oscillatory pattern was observed with arginine vasopressin (AVP). The oscillations depended upon the presence of extracellular Ca2+. Cytosolic free Na+ concentration ([Na+]i) in VSMC was also measured using the fluorescent Na+ probe sodium-binding benzofuran isophthalate. ANG II induced a gradual and sustained elevation of [Na+]i, from 24.0 +/- 6.2 to 36 +/- 9.7 mM. In response to AVP, [Na+]i rose to 41.0 +/- 11.6 mM. Video imaging of individual VSMC, with on-line ratio calibration of [Ca2+]i, revealed an inhomogeneous distribution of Ca2+ within the cell. [Ca2+] in the nucleus was invariably lower than in the cytoplasm in resting cells. In the cytoplasm, there were small regions in which [Ca2+] was elevated, or "hot spots." In Ca(2+)-containing medium, the initial rise in [Ca2+]i triggered by ANG II and AVP appeared to emanate from the hot spots and to spread evenly throughout the cytoplasm. Between [Ca2+]i oscillations, Ca2+ retreated back to the original hot spots. This study demonstrates the cellular and subcellular heterogeneity of [Ca2+]i both in resting VSMC and during stimulation by ANG II and AVP and reports the direct measurement of [Na+]i in VSMC. The results suggest an action of Ca2+ in both the initial and sustained phases of the response in VSMC and a link between changes in [Ca2+]i and [Na+]i.  相似文献   

10.
Single cell [Ca2+], studies were performed in chicken and rat osteoclasts loaded with fura-2 and exposed to a variety of treatments. Under resting conditions, basal [Ca2+]i, was 79.2 +/- 47.3 and 84.3 +/- 65.7 nM (averages +/- S.D.; n = 141 and 126) in the osteoclasts of the two species, respectively. Basal [Ca2+]i was stable in all rat and in approximately 80% of chicken osteoclasts. In the remaining 20%, spontaneous, irregular [Ca2+], fluctuations were observed (amplitude range: 50-200 nm over basal values). Increase of [Ca2+]o over the concentration of the Krebs-Ringer incubation medium (2 mM) induced rises of [Ca2+] in almost all cells investigated. [Ca2+] rises were already appreciable with 0.5 mM [Ca2+]o additions and reached high values with 4 mM additions: 390 +/- 113 and 364 +/- 214 nM [Ca2+], in rat and chicken osteoclasts, respectively (n = 122 and 101). Qualitatively, the responses to [Ca2+]o additions consisted of discrete [Ca2+]i transients, biphasic (an initial spike followed by a plateau), or monophasic (either the spike or the plateau). In a few chicken osteoclasts, the [Ca2+]i increase occurring after [Ca2+]o addition consisted of multiple, irregular fluctuations, similar to those observed in 20% of these cells under resting conditions. In individual osteoclasts subsequently exposed to multiple [Ca2+]o increase pulses, the type of the [Ca2+]i transient (mono- or biphasic) was maintained, and the size was dependent on the magnitude of the [Ca2+]o additions. Effects similar to those of [Ca2+]o were induced by the addition of Cd2+ or Ba2+ (but not La3+ or Mg2+) into the medium. The Cd2+ effect was maintained in part even in a Ca2+-free medium. Of various hormones and factors, parathormone, 1,25-dihydroxyvitamin D3, and prostaglandin E2 were inactive. In contrast, calcitonin was active in rat osteoclasts (which express numerous receptors). [Ca2+]i increases were small (19 +/- 17.9 nM; n = 21) when the hormone was administered alone; they were synergistic (severalfold potentiation) when the hormone was administered before or after [Ca2+]o. The [Ca2+]i effects of calcitonin were mimicked by 8Br-cAMP (31 +/- 26 nM; n = 12) when the nucleotide was administered alone; marked synergism when it was administered in combination with [Ca2+]o. This paper demonstrates for the first time that changes of [Ca2+]i are induced in osteoclasts by treatments with [Ca2+]o and calcitonin and can therefore be involved in intracellular mediation of the physiological effects of these two extracellular signals.  相似文献   

11.
Intracellular free calcium concentration [( Ca2+]1) was measured in suspensions of fura-2 loaded smooth-muscle cells isolated from the anterior byssus retractor muscle of Mytilus edulis. Successive application of 5mM carbachol (CCh) and 100mM KCl to the cells transiently elevated [Ca2+]1 from the resting value of 124 +/- 4.5nM (mean +/- S.E., n = 14) to 295 +/- 15.3 and 383 +/- 20.5 nM, respectively. The response to CCh was concentration-dependent with an ED50 of 10(-5) M. Under the microscope, 67 +/- 3.0 and 83 +/- 1.3 % of fura-2 loaded cells contracted on the addition of 5mM CCh and 100mM KCl, respectively. In Ca2+ -free sea water, the CCh induced change in [Ca2+]1 was partially suppressed whereas that induced by KCl was completely abolished, suggesting an agonist-evoked release of stored Ca2+.  相似文献   

12.
The mechanisms by which an elevated KCl level and the K+-channel inhibitor 4-aminopyridine induce release of transmitter glutamate from guinea-pig cerebral cortical synaptosomes are contrasted. KCl at 30 mM caused an initial spike in the cytosolic free Ca2+ concentration ([Ca2+]c), followed by a partial recovery to a plateau 112 +/- 13 nM above the polarized control. The Ca2+-dependent release of endogenous glutamate, determined by continuous fluorimetry, was largely complete by 3 min, by which time 1.70 +/- 0.35 nmol/mg was released. [Ca2+]c elevation and glutamate release were both insensitive to tetrodotoxin. KCl-induced elevation in [Ca2+]c could be observed in both low-Na+ medium and in the presence of low concentrations of veratridine. 4-Aminopyridine at 1 mM increased [Ca2+]c by 143 +/- 18 nM to a plateau similar to that following 30 mM KCl. The initial rate of increase in [Ca2+]c following 4-aminopyridine administration was slower than that following 30 mM KCl, and a transient spike was less apparent. Consistent with this, the 4-aminopyridine-induced net uptake of 45Ca2+ is much lower than that following an elevated KCl level. 4-Aminopyridine induced the Ca2+-dependent release of glutamate, although with somewhat slower kinetics than that for KCl. The measured release was 0.81 nmol of glutamate/mg in the first 3 min of 4-aminopyridine action. In contrast to KCl, glutamate release and the increase in [Ca2+]c with 4-aminopyridine were almost entirely blocked by tetrodotoxin, a result indicating repetitive firing of Na+ channels. Basal [Ca2+]c and glutamate release from polarized synaptosomes were also significantly lowered by tetrodotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In order to define the differences in the distribution of cytosolic free Ca2+ ([Ca2+]i) in pancreatic beta-cells stimulated with the fuel secretagogue glucose or the Ca(2+)-mobilizing agents carbachol and ATP, we applied digital video imaging to beta-cells loaded with fura-2.83% of the cells responded to glucose with an increase in [Ca2+]i after a latency of 117 +/- 24 s (mean +/- S.E., 85 cells). Of these cells, 16% showed slow wave oscillations (frequency 0.35/min). In order to assess the relationship between membrane potential and the distribution of the [Ca2+]i rise, digital image analysis and perforated patch-clamp methods were applied simultaneously. The system used allowed sufficient temporal resolution to visualize a subplasmalemmal Ca2+ transient due to a single glucose-induced action potential. Glucose could also elicit a slow depolarization which did not cause Ca2+ influx until the appearance of the first of a train of action potentials. [Ca2+]i rose progressively during spike firing. Inhibition of Ca2+ influx by EGTA abolished the glucose-induced rise in [Ca2+]i. In contrast, the peak amplitude of the [Ca2+]i response to carbachol was not significantly different in normal or in Ca(2+)-deprived medium. Occasionally, the increase of the [Ca2+]i rise was polarized to one area of the cell different from the subplasmalemmal rise caused by glucose. The amplitude of the response and the number of responding cells were significantly increased when carbachol was applied after the addition of high glucose (11.2 mM). ATP also raised [Ca2+]i and promoted both Ca2+ mobilization and Ca2+ influx. The intracellular distribution of [Ca2+]i was homogeneous during the onset of the response. A polarity in the [Ca2+]i distribution could be detected either in the descending phase of the peak or in subsequent peaks during [Ca2+]i oscillations caused by ATP. In the absence of extracellular Ca2+, the sequential application of ATP and carbachol revealed that carbachol was still able to raise [Ca2+]i after exhaustion of the ATP response. This may be due to desensitization to the former agonist, since the response occurred in the same area of the cell. These results reveal subtle differences in [Ca2+]i distribution following membrane depolarization with glucose or the application of Ca(2+)-mobilizing agonists.  相似文献   

14.
Calcium influx in internally dialyzed squid giant axons   总被引:9,自引:4,他引:5       下载免费PDF全文
A method has been developed to measure Ca influx in internally dialyzed squid axons. This was achieved by controlling the dialyzed segment of the axon exposed to the external radioactive medium. The capacity of EGTA to buffer all the Ca entering the fiber was explored by changing the free EGTA at constant [Ca++]i. At a free [EGTA]i greater than 200 microM, the measured resting Ca influx and the expected increment in Ca entry during electrical stimulation were independent of the axoplasmic free [EGTA]. To avoid Ca uptake by the mitochondrial system, cyanide, oligomycin, and FCCP were included in the perfusate. Axons dialyzed with a standard medium containing: [ATP] = 2 mM, [Ca++]i = 0.06 microM, [Ca++]o = 10 mM, [Na+]i = 70 mM, and [Na+]o = 465 mM, gave a mean Ca influx of 0.14 +/- 0.012 pmol.cm-2.s-1 (n = 12. Removal of ATP drops the Ca influx to 0.085 +/- 0.007 pmol.cm-2.s-1 (n = 12). Ca influx increased to 0.35 pmol.cm-2,s-1 when Nao was removed. The increment was completely abolished by removing Nai+ and (or) ATP from the dialysis medium. At nominal zero [Ca++]i, no Nai-dependent Ca influx was observed. In the presence of ATP and Nai [Ca++]i activates the Ca influx along a sigmoid curve without saturation up to 1 microM [Ca++]i. Removal of Nai+ always reduced the Ca influx to a value similar to that observed in the absence of [Ca++]i (0.087 +/- 0.008 pmol.cm-2.s-1; n = 11). Under the above standard conditions, 50-60% of the total Ca influx was found to be insensitive to Nai+, Cai++, and ATP, sensitive to membrane potential, and partially inhibited by external Co++.  相似文献   

15.
Single skeletal muscle fibres were isolated from the toad (Bufo marinus) and isometric force and myoplasmic free calcium concentration ([Ca2+]i) were measured. Brief applications of 4-chloro- m-cresol (4-CmC, 0.2-5 mM) elevated [Ca2+]i reversibly in a dose-dependent manner. The lowest concentration of 4-CmC which reliably gave maximal [Ca2+]i was 2 mM and it was, therefore, used for measurement of sarcoplasmic reticulum (SR) Ca2+ content. Tetanic stimulations (100 Hz) increased [Ca2+]i from a resting level of 105 +/- 47 nM (n = 10) to 1370 +/- 220 nM (n = 6). Application of 2 mM 4-CmC produced a contracture that was 54 +/- 16% (n = 6) of the tetanic force and elevated [Ca2+]i to a peak of 3520 +/- 540 nM (n = 8). Both force and [Ca2+]i levels (resting and tetanic) were restored after 10 min of washout of 4-CmC. In skinned muscle fibres, the myofibrillar Ca(2+)-sensitivity was not changed by 4-CmC, but maximal force was reduced to 74 +/- 10% (n = 4). The magnitude of the peak of the 4-CmC-induced Ca2+ transient was not significantly changed by removal of extracellular Ca2+ nor by inhibiting the SR Ca2+ pump with 2,5-di-tert-butylhydroquinone. Treatment of intact fibres with 30 mM caffeine produced a peak Ca2+ level that was indistinguishable from 2 mM 4-CmC. These results indicate that it is possible to measure the SR Ca2+ content in the same fibre with 4-CmC without loss of normal muscle function.  相似文献   

16.
Using whole-cell patch-clamp technique and Fura-2 fluorescence measurement, the presence of ATP-activated ion channels and its dependence on intracellular Ca2+ concentration ([Ca2+]i) in the epithelial cells of the endolymphatic sac were investigated. In zero current-clamp configuration, the average resting membrane potential was -66.8+/-1.3 mV (n=18). Application of 30 microM ATP to the bath induced a rapid membrane depolarization by 43.1+/-2.4 mV (n=18). In voltage-clamp configuration, ATP-induced inward current at holding potential (VH) of -60 mV was 169.7+/-6.3 pA (n=18). The amplitude of ATP-induced currents increased in sigmoidal fashion over the concentration range between 0.3 and 300 microM with a Hill coefficient (n) of 1.2 and a dissociation constant (Kd) of 11.7 microM. The potency order of purinergic analogues in ATP-induced current, which was 2MeSATP>ATPgammas>/=ATP>alpha, beta-ATP>ADP=AMP>/=adenosine=UTP, was consistent with the properties of the P2Y receptor. The independence of the reversal potential of the ATP-induced current from Cl- concentration suggests that the current is carried by a cation channel. The relative ionic permeability ratio of the channel modulated by ATP for cations was Ca2+>Na+>Li+>Ba2+>Cs+=K+. ATP (10 microM) increased [Ca2+]i in an external Ca2+-free solution to a lesser degree than that in the external solution containing 1.13 mM CaCl2. ATP-induced increase in [Ca2+]i can be mimicked by application of ionomycin in a Ca2+-free solution. These results indicate that ATP increases [Ca2+]i through the P2Y receptor with a subsequent activation of the non-selective cation channel, and that these effects of ATP are dependent on [Ca2+]i and extracellular Ca2+.  相似文献   

17.
We investigated a possible role of nifedipine-insensitive high voltage-activated (NI-HVA) Ca2+ channels in arterial diameter regulation in the semi-terminal branches of rabbit mesenteric artery (RMA). From these branches, NI-HVA Ca2+ currents showing almost identical properties to those previously identified in a similar region of guinea-pig [Circulation Research 1999;85:596-605] were recorded with whole-cell patch clamp recording. With video-microscopic measurement, the diameter of RMA segments perfused intraluminally at a constant rate (2-6 mL/h; 269 +/- 9 micro m, n = 27) decreased by 50-60% by raising the external K+ concentration ([K+]o) to 75 mM, a substantial part of which remained after addition of 1-10 micro M nifedipine (44 +/- 5% of initial diameter, n = 27). This nifedipine-insensitive diameter decrease (NI-DD) appeared to consist of initial transient and subsequent tonic phases (this separation was, however, not always clear), was resistant to tetrodotoxin, and was completely abolished in Ca2+-free or 100 micro M Cd2+-containing bath solutions. The magnitude of NI-DD increased depending on [K+]o with a threshold concentration of 20-40 mM. Raising the external Ca2+ concentration dose-dependently increased the magnitude of NI-DD, the extent being more prominent in the late tonic phase. Combined application of caffeine (10 mM) with ryanodine (3 micro M) produced a large transient NI-DD, which strongly attenuated the NI-DD evoked by a subsequent elevation in [K+]o. Using the fura-2 spectrofluorimetric Ca2+ imaging technique, a nifedipine-insensitive [Ca2+]i increase showing similar [K+]o-dependence and Cd2+ sensitivity to NI-DD was observed. These properties of NI-DD accord with those of NI-HVA Ca2+ channels, thus suggesting their contribution to small arterial diameter regulation in RMA.  相似文献   

18.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

19.
The effects of the thyroid status on the cytosolic free Ca2+ concentration ([Ca2+]i) in single cardiomyocytes were studied at rest and during contraction. The mean resting [Ca2+]i increased significantly from the hypothyroid (45 +/- 4 nM) through the euthyroid (69 +/- 12 nM) to the hyperthyroid condition (80 +/- 11 nM) at extracellular Ca2+ concentrations ([Ca2+]o) up to 2.5 mM. At [Ca2+]o above 2.5 mM the differences in [Ca2+]i between the groups became less. The amplitude of the Ca2+ transients became higher in all groups with increasing [Ca2+]o (1, 2.5 and 5 mM), and was highest at all [Ca2+]o in hyperthyroid myocytes. The beta-agonist isoprenaline elevated peak [Ca2+]i during contraction and increased the rate of the decay of the Ca2+ transients to a greater extent in hypothyroid myocytes than in hyperthyroid myocytes. Depolarization with high [K+]o induced a large but transient [Ca2+]i overshoot in hypothyroid myocytes, but not in hyperthyroid myocytes, before a new elevated steady-state [Ca2+]i was reached, which was not different between the groups. When isoprenaline was added to K+ o-depolarized myocytes after a steady state was reached, a significantly larger extra increase in [Ca2+]i was measured in the hypothyroid group (28%) compared with the hyperthyroid group (8%). It is concluded that in cardiac tissue exposed to increasing amounts of thyroid hormones (1) [Ca2+]i increases at rest and during contraction in cardiomyocytes and (2) interventions which favour Ca2+ entry into the cytosol [( Ca2+]o elevation, high [K+]o, beta-agonists) tend to have less impact on Ca2+ homoeostasis.  相似文献   

20.
In rats, data on influence of i. v. administration of calcium chloride on the level of [Ca2+] in the blood and on process of oppression ofthermoregulatory and respiratory functions in rats in hypothermia. 0.18 or 0.135 mmol Ca2+ on the 3rd minute from beginning of the administration increased [Ca2+] in the blood from 1.01 +/- 0.03 to 2.56 +/- 0.08 mM (or 2.27 +/- 0.06 mM). Then [Ca2+] was reduced gradually, in 20 minutes from administration, solution of CaCh [Ca2+] exceeded the initial level by 20-30 %. The increase of concentration of ionized calcium in the rat blood strengthened the cold oppression of breathing and cold shivering as compared with the control (administration of physiological solution). Arrest of breathing in rats after administration of CaCl2 solution occurred at higher rectal temperatures (21 +/- 0.03 degrees C) as compared with control experiments (18 +/- 0.4 degrees C), p < 0.05. It is suggested that increase of [Ca2+] in the blood strengthens effects of cold in the form of oppression of thermoregulatory and respiratory functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号