首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isocyanato and isothiocyanatopolypyridineruthenium complexes, [Ru(NCX)Y(bpy)(py)2]n+ (bpy=2,2′-bipyridine, PY=pyridine; X=O, Y=NO2 for n=0, and Y=py for n=1; X=S, Y=NO2 for n=0, Y=NO for n=2, and Y=py for n=1), were synthesized by the reaction of polypyridineruthenium complexes with potassium cyanate or sodium thiocyanate salt. Isocyanatoruthenium(II) complexes, [Ru(NCO)(NO2)(bpy)(py)2] and [Ru(NCO)(bpy)(py)3]+, react under acidic conditions to form the corresponding ammineruthenium complexes, [Ru(NO)(NH3)(bpy)(py)2]3+. The molecular structures of [Ru(NCO)(bpy)(py)3]ClO4, [Ru(NCS)(NO)(bpy)(py)2](PF6)2 and [Ru(NO)(NH3)(bpy)(py)2](PF6)3 were determined by X-ray crystallography.  相似文献   

2.
The structure of [Re(CO)3(phen)(im)]2SO4·4H2O has been determined by X-ray crystallography. The yellow crystals are orthorhombic, space group Pccn (No. 56), with a=17.456(6), B=18.194(5), C=12.646(4) Å, R=0.063 for Fo2>0, R=0.032 for Fo2>3σ. The compound, which also has been characterized by IR, 1H NMR, and UV---Vis spectroscopies, exhibits room temperature luminescence in aqueous solution (τ=120 ns) as well as reversible oxidation and reduction in acetonitrile solution (1.85 and −1.30 V versus SCE). The redox properties of the excited state of the complex (E0(Re+*/0 = 1.2; E0(Re2+/+*) = −0.7 V) are being exploited in studies of laser-induced electron tunneling in Re(CO)3(phen)(histidine)-modified proteins.  相似文献   

3.
Rapid reactions occur between [OsVI(tpy)(Cl)2(N)]X (X = PF6, Cl, tpy = 2,2′:6′,2″-terpyridine) and aryl or alkyl phosphi nes (PPh3, PPh2Me, PPhMe2, PMe3 and PEt3) in CH2Cl2 or CH3CN to give [OsIV(tpy)(Cl)2(NPPh3)]+ and its analogs. The reaction between trans-[OsVI(tpy)(Cl)2(N)]+ and PPh3 in CH3CN occurs with a 1:1 stoichiometry and a rate law first order in both PPh3 and OsVI with k(CH3CN, 25°C) = 1.36 ± 0.08 × 104 M s−1. The products are best formulated as paramagnetic d4 phosphoraniminato complexes of OsIV based on a room temperature magnetic moment of 1.8 μB for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6), contact shifted 1H NMR spectra and UV-Vis and near-IR spectra. In the crystal structures of trans-[OsIV(tpy)(Cl)2( NPPh3)](PF6)·CH3CN (monoclinic, P21/n with a = 13.384(5) Å, b = 15.222(7) Å, c = 17.717(6) Å, β = 103.10(3)°, V = 3516(2) Å3, Z = 4, Rw = 3.40, Rw = 3.50) and cis-[OsIV(tpy)(Cl)2(NPPh2Me)]-(PF6)·CH3CN (monoclinic, P21/c, with a = 10.6348(2) Å, b = 15.146(9) ÅA, c = 20.876(6) Å, β = 97.47(1)°, V = 3334(2) Å3, Z = 4, R = 4.00, Rw = 4.90), the long Os-N(P) bond lengths (2.093(5) and 2.061(6) Å), acute Os-N-P angles (132.4(3) and 132.2(4)°), and absence of a significant structural trans effect rule out significant Os-N multiple bonding. From cyclic voltammetric measurements, chemically reversible OsV/IV and OsIV/III couples occur for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) in CH3CN at +0.92 V (OsV/IV) and −0.27 V (OsIV/III) versus SSCE. Chemical or electrochemical reduction of trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) gives isolable trans-OsIII(tpy)(Cl)2(NPPh3). One-electron oxidation to OsV followed by intermolecular disproportionation and PPh3 group transfer gives [OsVI(tpy)Cl2(N)]+, [OSIII(tpy)(Cl)2(CH3CN)]+ and [Ph3=N=PPh3]+ (PPN+). trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) undergoes reaction with a second phosphine under reflux to give PPN+ derivatives and OsII(tpy)(Cl)2(CH3CN) in CH3CN or OsII(tpy)(Cl)2(PR3) in CH2Cl2. This demonstrates that the OsVI nitrido complex can undergo a net four-electron change by a combination of atom and group transfers.  相似文献   

4.
Dinuclear manganese(II) complexes [Mn2(bomp)(PhCO2)2]BPh4 (1), [Mn2(bomp)(MeCO2)2]BPh4 (2), and [Mn2(bomp)(PhCO2)2]PF6 (3) were synthesized with a dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. Dinuclear zinc complex [Zn2(bomp)(PhCO2)2]PF6 (4) was also synthesized for the purpose of comparison. X-ray analysis revealed that the complex 1·CHCl3 contains two manganese ions bridged by the phenolic oxygen and two benzoate groups, forming a μ-phenoxo-bis(μ-benzoato)dimanganese(II) core. Magnetic susceptibility measurements of 1–3 over the temperature range 1.8–300 K indicated antiferromagnetic interaction (J=−4 to −6 cm−1). Cyclic voltammograms of 3 showed a quasi-reversible oxidation process at +0.9 V versus a saturated sodium chloride calomel reference electrode, assigned to MnIIMnII/MnIIMnIII.  相似文献   

5.
Lewis acid adducts of the hydrides cis- and trans-Re(CO)(PMe3)4H (1) and (2), mer-Re(CO)2(PMe3)3H (3), fac-Re(CO)2(PMe3)3H (4) and trans-Re(CO)3(PMe3)2H (5) were studied with BH3 and 9-borabicyclo[3,3,1] norbonane (BBNH). Using BH3·THF and (BBNH)2 1 and 2 afforded Re(CO)(PMe3)32-BH4) (6) and Re(CO)(PMe3)32-BBNH2) (7) as stable and isolable products. VT IR studies established for the reaction to 7 that BBNH first attaches in a pre-equilibrium to the OCO atom of 1 or 2. At higher temperatures ReH adduct formation occurs with instantaneous transformation to 7 and elimination of PMe3·BBNH. In a similar way, the hydrides 3 and 4 were converted with BH3·THF and (BBNH)2 to yield the stable complexes Re(CO)2(PMe3)22-BH4) (8) and Re(CO)2(PMe3)22-BBNH2) (9). The intermediacy of the η1-BH4 adducts mer-/fac-Re(CO)2(PMe3)31-BH4) was confirmed by VT 1H, 31P NMR and VT IR experiments. The conversion of 5 with BH3·THF led to equilibria with adducts at the OCO terminus in trans position to H and with HRe as revealed by VT IR studies. Temperature dependent 31P equilibrium studies allowed to calculate ΔH=−4.9 kcal mol−1 and ΔS=+0.034 e.u. for this reaction. These adducts could not be isolated. Compound 5 does not react with (BBNH)2 even at elevated temperatures. DFT calculations were carried out to support the structures of the BH3 adducts of 5. In addition a vibrational analysis helped to unravel the IR band assignments of the involved compounds. DFT calculations on 8 confirmed its C2v structure. X-ray diffraction studies were carried out on single crystals of 6 and 7.  相似文献   

6.
The reaction of meso-tetrakis (4-dimethoxyphenyl) porphinatomanganese(II), MnTPOMeP, with TCNE (TCNE = tetracyanoethylene) leads to the formation of [MnTPOMeP]+ [TCNE] and [MnTPOMeP]+[OC(CN)C(CN)2]. The single-crystal X-ray structures of the latter as well as [Cu(bipy)2Cl]+ [OC(CN)C(CN)2] were determined. The former has a disordered [OC(CN)C(CN)2] bridging via C and O between a pair of MnIII sites, whereas the latter has an isolated [OC(CN)C(CN)2] unbound to CuII. The IR characterization for μ2-C,O bound [OC(CN)C(CN)2] is at 2219m and 2196s (νCN) cm−1 and at 1558s (νCO) cm−1 while for unbound [OC(CN)C(CN)2] it is at 2210m, 2203m, 2181m (νCN) cm−1 and at 1583s (νCO) cm−1.  相似文献   

7.
The trinuclear clusters [Pd3(μ-dppm)3(CO)]2+ and [PtPdCo(μ-dppm)2(CO)3(CNtBu)]+ exhibit a large and a small cavity, respectively, formed by the phenyl rings of the bridging diphosphine ligands. Their binding constants (K11) with halide ions (X) were obtained by UV-Vis spectroscopy. The binding ability varies as I > Br > Cl, and [Pd3(μ-dppm)3(CO)]2+ > [ptPdCo(μ-dppm)2-(CO)3(CNtBu)]+. The MO diagram for the related cluster [Pd2Co(μ-dppm)2(CO)4]+ has been addressed theoretically in order to predict the nature of the lowest energy electronic bands. For this class of compounds, the lowest energy bands are assigned to charge transfers from the Co center to the Pd2 centers.  相似文献   

8.
Mono- and di-manganese inclusion compounds 1 and 2 are reported. Two mono-manganese molecules Mn(bpy)2(NO3)2 (bpy=2,2′-bipyridine) and [Mn(bpy)2(NO3)(H2O)]·NO3 coexist in the mole ratio of 1:1 in the structure of 1, while two di-manganese molecules [Mn2O(bpy)2(phtha)2(H2O)2]·(NO3)2 (phtha=phthalate) and [Mn2O(bpy)2(phtha)2(NO3)(H2O)]·NO3 in the structure of 2. Refluxing Mn(NO3)2/bpy/phthalic acid reaction mixtures in CH3CN leads to the isolation of 1, further concentration of the reaction solution in raising temperature results in 2. The Mn1 and Mn2 units in the inclusion compounds 1 and 2 are similar to other reported Mn1 and Mn2 analogs, respectively. The Jahn–Teller distortion was observed to give rise to the elongation along the Oterminal---Mn---Ocarboxyl axes for all the four Mn(III) sites in 2, leading to unexpected longer Mn(III)---Oaqua than Mn(II)---Oaqua in 1. Extensive hydrogen bonding interactions among H2O, NO3 − and COOH were observed in the two inclusion compounds. Cyclic voltammetry of 2 in DMF displays two quasi-reversible redox couples at +0.10/+0.22 and −0.43/−0.36 V assigned to the Mn(III)Mn(IV)/2Mn(III) and 2Mn(III)/Mn(III)Mn(II), respectively. Variable temperature magnetic susceptibilities of 1 and 2 were measured. The data were fit to a model including axial zero-field splitting term and a good fit was found with D=1.77 cm−1, g=1.98 and F=1.48×10−5 for 1. For 2, the least-squares fitting of the experimental data led to J=2.37 cm−1, g=2.02 and D=0.75 cm−1 with R=1.45×10−3.  相似文献   

9.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

10.
[Fe(TIM)(CH3CN)2](PF6)2 (1) (TIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclodeca-1,3,8,10-tetraene) forms a complex with NO reversibly in CH3CN (53±1% converted to the NO complex) or 60% CH3OH/40% CH3CN (81±1% conversion). Quantitative NO complexation occurs in H2O or CH3OH solvents. The EPR spectrum of [Fe(TIM)(solvent)NO]2+ in frozen 60/40 CH3OH/CH3CN at 77 K shows a three line feature at g=2.01, 1.99 and 1.97 of an S=1/2FeNO7 ground state. The middle line exhibits a three-line N-shf coupling of 24 G indicating a six-coordinate complex with either CH3OH or CH3CN as a ligand trans to NO. In H2O [Fe(TIM)(H2O)2]2+ undergoes a slow decomposition, liberating 2,3-butanedione, as detected by 1H NMR in D2O, unless a π-acceptor axial ligand, L=CO, CH3CN or NO is present. An equilibrium of 1 in water containing CH3CN forms [Fe(TIM)(CH3CN)(H2O)]2+ which has a formation constant KCH3CN=320 M−1. In water KNOKCH3CN since NO completely displaces CH3CN. [Fe(TIM)(CH3CN)2]2+ binds either CO or NO in CH3CN with KNO/KCO=0.46, sigificantly lower than the ratio for [FeII(hemes)] of 1100 in various media. A steric influence due to bumping of β-CH2 protons of the TIM macrocycle with a bent S=1/2 nitrosyl as opposed to much lessened steric factors for the linear Fe---CO unit is proposed to explain the lower KNO/KCO ratio for the [Fe(TIM)(CH3CN)]2+ adducts of NO or CO. Estimates for formation constants with [Fe(TIM)]2+ in CH3CN of KNO=80.1 M−1 and KCO=173 M are much lower than to hemoglobin (where KNO=2.5×1010 M−1 and KCO=2.3×107) due to a reversal of steric factors and stronger π-backdonation from [FeII(heme)] than from [FeII(TIM)(CH3CN)]2+.  相似文献   

11.
The reactions of various proton donors (phenol, hexafluoro-2-propanol, perfluoro-2-methyl-2-propanol, monochloroacetic acid, and tetrafluoroboric acid) with the rhenium (I) hydride complex [(triphos)Re(CO)2H] (1) have been studied in dichloromethane solution by in situ IR and NMR spectroscopy. The proton donors from [(triphos)Re(CO)2H…HOR] adducts exhibiting rather strong H…H interactions. The enthalpy variations associated with the formation of the H-bonds (−ΔH = 4.4–6.0 kcal mol−1) have been determined by IR spectroscopy, while the H…H distance in the adduct [(triphos)Re(CO)2H…HOC(CF3)3] (1.83 Å) has been calculated by NMR spectroscopy through the determination of the T1min relaxation time of the Re---H proton. It has been shown that the [(triphos)Re(CO)2H…HOR] adducts are in equilibrium with the dihydrogen complex [(triphos)Re(CO)22-H2)]+, which is thermodynamically more stable than any H-bond adduct.  相似文献   

12.
The fluoro-hydrido-oxo complex [Re(F)(H)(O)Cyttp]+ (3, Cyttp = PhP(CH2CH2CH2PCy2)2) was prepared in high yield from [Re(H2)H4Cyttp]SbF6 (1(SbF6), NaSbF6 and acetone in toluene at reflux. Reaction chemistry of 3 has been studied and, where appropriate, compared with that of the related dihydrido-oxo complex [ReH2(O)Cyttp]+ (2). Unlike 2, which readily reacts with both CO and SO2, 3 was found to be inert to these reagents under comparable conditions. However, 3(SbF6) reacts with NaSbF6 at elevated temperature to afford the difluoro-oxo complex [ReF2(O)Cyttp]+ (4). 4 undergoes fluoride substitution by Cl or Br to yield [Re(X)(F)(O)Cyttp]+ (X = Cl (5, Br (6)). 5 can also be obtained by treatment of 6(BPh4) with LiCl. All of these complexes contain mer-Cyttp, and 3–6 contain trans fluoride and oxide ligands as inferred from spectroscopic data.  相似文献   

13.
The cationic monoalkylated derivatives of the well-known metalloligand [Pt2(μ-S)2(PPh3)4], viz. [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = n-Bu, CH2Ph) are themselves able to act as metalloligands towards the Ph3PAu+ and R′Hg+ (R′ = Ph or ferrocenyl) fragments, by reaction with Ph3PAuCl or R′HgCl, respectively. The resulting dicationic products [Pt2(μ-SR)(μ-SAuPPh3)(PPh3)4]2+ and [Pt2(μ-SR)(μ-SHgR′)(PPh3)4]2+ are readily isolated as their hexafluorophosphate salts, and have been fully characterised by spectroscopic techniques and an X-ray structure determination on [Pt2(μ-SR)(μ-SHgFc)(PPh3)4](PF6)2.  相似文献   

14.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

15.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

16.
The complex Pt(bph) (CO)2 crystallizes in the space group Cmcm with a = 18.647(6), B = 9.566(2) and C = 6.4060(5) Å. The geometry of the molecule is slightly distorted from square planar with a Pt---C(CO) bond distance of 1.98(2) Å and a Pt---C(bph) bond distance of 2.04(2) Å. The Pt(bph)(CO)2 complex serves as a precursor for the preparation of a wide variety of Pt(bph)X2 complexes, where X = monodentate ligands such as acetonitrile, pyridine, etc., and X2 = bidentate ligands such as bypyridine, 1,10-phenanthroline, etc. In the solid state, the complex exhibits a green color, but when ground with an alkali metal salt turns deep blue to purple. In CH2Cl2, the color disappears but optical transitions are observed at 271 nm (2.7 × 104 M−1 cm−1), 303 nm (1.1 × 104 M−1 cm−1) and 330 nm (5.5 × 103 M−1 cm−1). The complex is a weak emitter exhibiting a structured spectrum in CH2Cl2 at r.t. with maxima located at 562 and 594 nm and an emission lifetime of 3.1 μs when excited at 337 nm.  相似文献   

17.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

18.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

19.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

20.
The potential in preparative chemistry of the precursors trans-[Ru(NH3)(CC---R1)(Ph2PCH2CH2PPh2)2]PF6 (3) has been studied. They offer a convenient access, by NH3 displacement, to new functional alkynyl-ruthenium derivatives. Complexes 3 react with alkynes HCC---R2 to give unsymmetrical trans-Ru(---CC---R1)(---CC---R2)(dppe)2 compounds 4a-c, and with sodium methoxide in methanol they open the route to a variety of mixed hydride complexes 5a-c, trans-Ru(H)(---CC---R1)(dppe)2. In contrast, with carbon monoxide or isocyanides CN---R3 (R3:CH2Ph, C6H11, Me3C) they allow the preparation of cationic derivatives trans-(Ru(CO)(---CC---R1)(dppe)2]PF6 (6a-c) or trans-[Ru(CNR3)(---CC---R1)(dppe)2]PF6 (7a-d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号