首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary To investigate the control of the timing in the epithelio-mesenchymal transformation of the neural crest into a migrating population, neural anlagen (neural tube plus crest) were isolated from 2-day quail embryos by proteases in the presence of Ca+ + and explanted onto substrates favourable for neural crest cell migration. Explants isolated before normal migration had commenced required 3–8 h in vitro before neural crest cells started migration, but explants obtained at migratory stages showed an immediate onset of migration. The schedule was similar to that expected in vivo. When pre-migratory neural anlagen were isolated by protease in Ca+ +- and Mg+ +-free (CMF) medium, or when the protease was followed by a brief (5 min) exposure to CMF medium, neural crest cell migration commenced without delay, and the cohesion of the anlagen was impaired. Ca+ +-free medium duplicated the effects of CMF, but neither Mg+ +-free medium nor CMF treatment before treatment with protease stimulated migration and reduced cohesion. Precocious neural crest cell migration and reduced cohesion also followed when neural anlagen of pre-migratory stages were cultured with membrane. Ca+ +-channel antagonists D600 and Nifedipine, without any exernal Ca+ +-depletion.The decrease of cohesion of these tissues is consistent with results in other systems where protease/Ca+ +-depletion inactivates Ca+ +-dependent cell-cell adhesive mechanisms. Therefore, we suggest that Ca+ +-dependent cell-cell adhesions play a part in preventing neural crest cells from migrating precociously and that the timed inactivation of this adhesion system normally helps trigger the onset of migration. The results with blockers of Ca+ +-channels suggest that Ca+ + levels may be involved in regulating this system.  相似文献   

2.
To help resolve the controversy as to whether or not Na+-H+ exchange is functioning during reperfusion of the ischemic myocardium we assessed the effects of dimethylamiloride (DMA, an amiloride analogue possessing selectivity for inhibition of the Na+-H+ exchanger) on cardiac function and intracellular pH during ischemia-reperfusion. Studies were performed in the presence of bicarbonate (modified Krebs-Henseleit buffer) or in the nominal absence of bicarbonate (HEPES buffer) in order to determine if similar cardioprotection and effects on intracellular pH were observed in the presence and absence of bicarbonate dependent transport processes. Isovolumic rat hearts were perfused in the Langendorff mode at a constant pressure of 80 mm Hg and subjected to 28 min total global ischemia at 37°C. Intracellular pH was determined from the pH dependent shift of the inorganic phosphate peak in 31P nuclear magnetic resonance spectra. DMA (20 µM) was infused for either 2.5 min before ischemia, for the initial 5 min of reperfusion, or at both time intervals. DMA had no effect on the intracellular pH during ischemia. Intracellular pH returned to pre-ischemic levels within 2.5 min of reperfusion in bicarbonate buffer. This normalization of pH was slower in HEPES perfusate. In both bicarbonate and HEPES perfused hearts all drug dosing regimens caused a significant increase in the recovery of mechanical function after reperfusion and slowed the recovery of intracellular pH during reperfusion. These results suggest that the Na+-H+ exchanger is activated during reperfusion of the ischemic myocardium, that this activation of the exchanger contributes to ischemia-reperfusion induced cardiac dysfunction and that administration of an inhibitor of Na+-H+ exchange at reperfusion significantly attenuates the deleterious effects of exchanger activation.  相似文献   

3.
Summary Necturus kidneys were perfused with Tris-buffered solutions at three different pH values, i.e. 7.5, 6.0 and 9.0. A significant drop in fluid absorption occurred at pH 6.0, whereas pH 9.0 did not increase volume flow significantly. When acute unilateral, i.e. either in the lumen or the peritubular capillaries, and bilateral pH changes were elicited in both directions from 7.5 to 9.0 at a constant Tris-butyrate buffer concentration, both peritubular membrane potential differenceV 1 and transepithelial potential differenceV 3 hyperpolarized, independently of the side where the change in pH was brought about. Acid perfusions at pH 6.0 caused a similar response but of opposite sign. Analysis of the potential changes shows that pH influences not only the electromotive force and resistance of the homolateral membrane, but also the electrical properties of the paracellular path. Interference of pH with Na, Cl or K conductance was assessed. Any appreciable role for sodium or chloride was excluded, whereas the potassium transference number (t K) of the peritubular membrane increased 16% in alkaline pH. However, this increase accounts only for 19 to 36% of the observed hyperpolarization. Since changes in Tris-butyrate buffer concentration at constant pH do not affect V1 or V3 considerably, the hyperpolarization in pH 9 cannot be explained by an elevation in internal pH only, or by a Tris-H+ ion diffusion potential only. The role of the permeability of the buffers: bicarbonate, butyrate and phosphate, in determining electrical membrane parameters was evaluated. Transport numbers of the buffer anions ranked as follows:t HCO3>t butyrate>t phosphate. It is concluded that modulation of membrane potential by extracellular pH is mediated primarily by a change in peritubular cell membranet K and additionally by membrane currents carried by buffer anions.  相似文献   

4.
橡胶树树皮质膜H~+-ATPase在橡胶树产排胶过程中扮演着重要角色,制备高纯度及高活性的质膜是研究质膜H~+-ATPase特性和功能的必要条件。该研究以一年生巴西橡胶树(Hevea brasiliensis)树皮为材料,利用差速离心法获得粗膜微粒体,通过两相分配法分离纯化质膜,并研究两相体系中不同浓度聚合物(5.9%、6.1%、6.3%、6.5%、6.7%,W/W)和KCl(2、5、8、11、14 mmol·L~(-1))对质膜蛋白得率和纯化效率的影响。通过Bradford法对质膜蛋白得率进行检测,同时采用酶活性检测法对质膜纯度进行检测,分析结果表明选用6.4%(W/W)聚合物浓度和5mmol·L~(-1)KCl组成的两相体系可获得较高纯度和得率的橡胶树树皮质膜。通过电镜观察法在形态学上对质膜纯度进一步评价,利用铅铀能侵染全部膜组分使其染色,而磷钨酸只能专一性地侵染质膜并使其染色这一特性,分别使用铅铀和磷钨酸对切片进行染色,并通过透射电镜对切片染色程度进行直接观察,结果表明提取的粗膜微粒体中质膜组分较少,存在大量的细胞器膜污染,而纯化后的质膜膜组分较单一,其他膜组分污染较少,而且质膜大小较均一,可以用于进行后续橡胶树树皮质膜H~+-ATPase特性和功能的研究。  相似文献   

5.
Gametes of opposite mating type (mt + and mt -) of the green alga Chlamydomonas eugametos agglutinate via their flagella as a prelude to sexual fusion. To quantitate sexual agglutination, an in vitro assay has been developed using 35S-labeled flagella and the isolated mt -agglutination factor. It is shown that not only isolated flagella, but also the mt -agglutination factor rapidly bind to the flagella of intact gametes of the opposite mating type. This confirms the role of the mt -agglutination factor in determining the sexual agglutinability of mt -gametes. As a function of binding, the agglutinative power of the flagella of both mating types is destroyed by a temperature-sensitive process. Likewise, the mt -agglutination factor can be completely inactivated.Abbreviations Mt +/- mating type plus or minus - PAS periodic-acid Schiff-reagent - Hepes 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid - HMC buffer Hepes buffer (10 mM. pH 7.2, containing 1 mM MgCl2 and 1 mM CaCl2)  相似文献   

6.
Tonoplast membranes were prepared from tissue homogenates and from vacuoles isolated from beetroot storage tissue (Beta vulgaris L., ssp. conditiva) for transmission electron microscopic analysis of the structure of the beetroot vacuolar ATPase using the negative staining technique. By comparison of the specific inhibitor sensitivities of the ATPase activity, i.e. ATP hydrolysis and H+-pumping, the purity of the tonoplast preparations with respect to contamination with mitochondrial inner membranes was assessed to avoid confusion with mitochondrial F1F0-ATPase. Membranes prepared in Hepes/Tris or BTP/Mes-containing media rarely showed typical head-and-stalk structures although characteristic nitrate- and bafilomycin A1-sensitive ATP-hydrolysis and H+-pumping could be measured. However, typical head-and-stalk structures were observed regularly when these buffers were replaced by K-phosphate buffer. Under these conditions, the beetroot vacuolar ATPase is characterized by a large head group with a central cleft, a thin stalk, connecting it to the membrane and by basal components projecting from the base of the stalks near the vacuolar membrane and forming a distinct layer of electron-light particles between the vacuolar membrane and the layer of non-stained head groups.  相似文献   

7.
A smooth microsomal fraction isolated from homogenates of Pbaseolus vulgaris root tissue has been found to possesss a highly active basal ATPase (measured in the absence of added cations). The microsomal membranes also feature a cation-sensitive ATPase which responds to Mg2+, Na+ and K+, but in a manner that is highly variable with pH. In contrast, membrane fragments prepared by a technique designed to yield purified plasma membrane were capable of little or no hydrolysis of ATP either in the presence or absence of added cations. This suggests that the microsomal activity is a reflection of membrane-bound ATPase which has been derived from cytoplasmic membranes, possibly the tonoplast, rather than plasma membrane.  相似文献   

8.
Summary A heterogeneous distribution of H+-ATPase was visualized in germinated pollen ofLilium longiflorum using monoclonal antibodies raised against plasma membrane H+-ATPase. Immunolocalization studies of protoplasts and subprotoplasts derived from pollen tubes and sectioned pollen grains and pollen tubes show that H+-ATPases are abundant in the plasma membrane of pollen grains but are absent or sparsely distributed in the plasma membrane of pollen tubes. This polar distribution of H+-ATPases is probably the basis of the endogenous current pattern measured in growing lily pollen and involved in pollen tube tip growth.Abbreviations BSA bovine serum albumine - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino)-ethane sulphonic acid - PBS phosphate buffered saline - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) - Tris 2-amino-2-hydroxymethyl-1,3-propandiol  相似文献   

9.
A stroke causes a hypoxic brain microenvironment that alters neural cell metabolism resulting in cell membrane hyperpolarization and intracellular acidosis. We studied how intracellular pH (pHi) is regulated in differentiated mouse neural progenitor cells during hyperpolarizing conditions, induced by prompt reduction of the extracellular K+ concentration. We found that the radial glia-like population in differentiating embryonic neural progenitor cells, but not neuronal cells, was rapidly acidified under these conditions. However, when extracellular calcium was removed, an instant depolarization and recovery of the pHi, back to normal levels, took place. The rapid recovery phase seen in the absence of calcium, was dependent on extracellular bicarbonate and could be inhibited by S0859, a potent Na/HCO3 cotransporter inhibitor. Immunostaining and PCR data, showed that NBCe1 (SLC4A4) and NBCn1 (SLC4A7) were expressed in the cell population and that the pHi recovery in the radial glial-like cells after calcium removal was mediated mainly by the electrogenic sodium bicarbonate transporter NBCe1 (SLC4A4). Our results indicate that extracellular calcium might hamper pHi regulation and Na/HCO3 cotransporter activity in a brain injury microenvironment. Our findings show that the NBC-type transporters are the main pHi regulating systems prevailing in glia-like progenitor cells and that these calcium sensitive transporters are important for neuronal progenitor cell proliferation, survival and neural stem cell differentiation.  相似文献   

10.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34.  相似文献   

11.
Membrane potentials were recorded in isolated segments of interscapular brown adipose tissue from rats. After equilibration at 29°C in Krebs-Ringer bicarbonate buffer a mean value of -51 ± 4 mv (SD) was found. This level could be maintained for up to 5 hr. The mean effective membrane resistance was 1.35 ± 0.45 megohm. The membrane potential was a function of the extracellular potassium concentration. Ouabain (10-6-10-3 M) and incubation in K-free buffer produced progressive depolarization. Epinephrine and norepinephrine in concentrations as low as 10-8 g/ml produced a prompt depolarization. Cooling of the tissue and lowering of the oxygen tension caused a marked and reversible decrease in the membrane potential. In tissue obtained from cold-adapted rats, the membrane potential was considerably diminished. 6Assuming that the membrane potential is some function of the Na permeability of the plasma membrane it is suggested that an increase in the rate of active Na-K transport and ensuing ADP formation might contribute to the increase in respiration seen during exposure to thermogenic stimuli.  相似文献   

12.
The carboxylic ionophore, monensin, rapidly induced cell-wall acidification and a decrease in cytosolic pH when added to maize coleoptiles at low external pH and Na+ concentration. Elongation growth at rates equivalent to those obtained with indole-3-acetic acid was induced for about 1 h. Stimulation of the outwardly directed proton pump apparently occurred, since under the same conditions monensin induced membrane hyperpolarization of maize root rhizodermis cells. When the external pH was high (>8) and Na+ present, monensin treatment caused only minimal changes in membrane potential and cytosolic pH. Although the ionophore transported protons out of the cell, resulting in cell-wall acidification, no elongation growth occurred. However, under identical conditions, indole-3-acetic acid dit induce growth. The data indicates that stimulation of the outwardly directed electrogenic proton pump rather than the subsequent acidification of the cell wall is vital for the induction of elongation growth.Abbreviations CFA2 6-carboxyfluorescein diacetate - FA2 fluorescein diacetate - Hepes 4-(2-hydroxyethyl-1-piperazinepropanesulfonic acid - IAA indole-3-acetic acid - Mes 2-(N-morpholino) ethanesulfonic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

13.
The cytoplasm and the vacuole were isolated from internodal cells of Chara corallina by using the intracellular perfusion technique, and their buffer capacities (βi) were determined from the titration curves. The pH of the isolated vacuolar sap was 5.19 ± 0.029 (mean ± standard error). At this pH, βi was minimal and amounted to 0.933 ± 0.11 millimoles H+/pH unit/liter vacuolar sap. The pH of isolated cytoplasm was 7.22 ± 0.028. βi was minimal in this pH region and amounted to 14.2 ± 0.80 millimoles H+/pH unit/liter cytoplasm. When 1% (volume/volume) Triton X-100 was added to the cytoplasmic solution to permeabilize the subcellular organelles, the cytoplasmic pH increased to 7.32 ± 0.026, where βi was 20.35 ± 2.66 millimoles H+/pH unit/liter cytoplasm. This shows that alkaline subcellular compartments exist in the cytoplasm and also that the cytoplasmic pH before adding Triton X-100 may represent the cytosolic pH. These data indicate that the pH values of the cytoplasm and the vacuole are regulated at the values where the βi values are minimal. This suggests that ATP- and inorganic pyrophosphate-dependent H+ pumps in the plasma membrane and the tonoplast could efficiently regulate the pH of both cytoplasm and vacuole in Chara internodal cells.  相似文献   

14.
The mechanism of sucrose transport was investigated in plasma membrane (PM) vesicles isolated from spinach (Spinacia oleracea L.) leaves. PM vesicles were isolated by aqueous two-phase partitioning and were equilibrated in pH 7.8 buffer containing K+. The vesicles rapidly accumulated sucrose in the presence of a transmembrane pH gradient (ΔpH) with external pH set at 5.8. The uptake rate was slow at pH 7.8. The K+-selective ionophore, valinomycin, stimulated uptake in the presence of a ΔpH, and the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), greatly inhibited ΔpH-dependent sucrose uptake. Addition of sucrose to the vesicles resulted in immediate alkalization of the medium. Alkalization was stimulated by valinomycin, was abolished by CCCP, and was sucrose-specific. These results demonstrate the presence of a tightly coupled H+/sucrose symporter in PM vesicles isolated from spinach leaves.  相似文献   

15.
The photosynthetic activities of three planktonic desmid species (Staurastrum brachiatum, Staurodesmus cuspidatus var. curvatus, and Staurastrum chaetoceras) were compared after adaptation to medium enriched with either a 20 mM Na+-phosphate (P) or HEPES buffer. Incubations up to 2 d were carried out at pH 6 or 8 under normal air or air enriched with 5 % CO2. Gross maximum photosynthetic rate (P max) and growth rate were decreased in both S. brachiatum and Std. cuspidatus at higher pH when using the HEPES buffer and this effect was independent of CO2 concentration, indicating that pH had an inhibitory effect on photosynthesis and growth in these species. The P-buffer at pH 8 caused a large decrease in P max and quantum yield for charge separation in photosystem 2 (PS2), compared to HEPES-buffered algae. This effect was very large in both S. brachiatum and Std. cuspidatus, two species characteristic of soft water lakes, but also significant in S. chaetoceras, a species dominant in eutrophic, hard water lakes. The decreased P max in P-buffer could not be related to a significant increase in cellular P content known to be responsible for inhibition in isolated chloroplasts. Experiments at pH 6 and 8 showed that two conditions, high pH and high Na+ concentration, both contributed to the decreased P max and quantum yield in the desmids. Effects of a P-buffer were less pronounced by using K+-P buffer. The use of P-buffer at pH 8 possibly resulted in high irradiance stress in all species, indicated by damage in the PS2 core complex. In the soft water species pH 8 resulted in increased non-photochemical quenching together with a high de-epoxidation state of the xanthophyll cycle pigments.  相似文献   

16.
The H+/ATP stoichiometry was determined for the plasma membrane H+-ATPase from red beet (Beta vulgaris L., var Detroit Dark Red) storage tissue associated with native vesicles. The determination of H+/ATP stoichiometry utilized a kinetic approach where rates of H+ influx, estimated by three different methods, were compared to rates of ATP hydrolysis measured by the coupled enzyme assay under identical conditions. These methods for estimating H+ influx were based upon either determining the initial rate of alkalinization of the external medium from pH 6.13, measuring the rate of vesicle H+ leakage from a steadystate pH gradient after stopping the H+-ATPase or utilizing a mathematical model which describes the net transport of H+ at any given point in time. When the rate of H+ influx estimated by each of these methods was compared to the rate of ATP hydrolysis, a H+/ATP stoichiometry of about 1 was observed. In consideration of the maximum free energy available from ATP hydrolysis (ΔGatp), this value for H+/ATP stoichiometry is sufficient to account for the magnitude of the proton electrochemical gradient observed across the plasma membrane in vivo.  相似文献   

17.
Summary Cellular potential and pH measurements (pH i ) were carried out in the perfused kidney ofNecturus on proximal tubules with standard and recessed-tip glass microelectrodes under control conditions and after stimulation of tubular bicarbonate reabsorption. Luminal pH and net bicarbonate reabsorption were measured in parallel experiments with recessed-tip glass or antimony electrodes, both during stationary microperfusions as well as under conditions of isosmotic fluid transport. A mean cell pH of 7.15 was obtained in control conditions. When the luminal bicarbonate concentration was raised to 25 and 50mm, pH i rose to 7.44 and 7.56, respectively. These changes in pH i were fully reversible. Under all conditions intracellular H+ was below electrochemical equilibrium. Thus the maintenance of intracellular pH requires active H+ extrusion across one or both of the cell membranes. The observed rise in pH i and the peritubular depolarization after stimulation of bicarbonate reabsorption are consistent with enhanced luminal hydrogen ion secretion and augmentation of peritubular bicarbonate exit via an anion-conductive transport pathway.  相似文献   

18.
H+/sugar symport in the obligatory aerobic yeastRhodotorula glutinis was analyzed under conditions where the plasma membrane was selectively depolarized by the lipophilic cation tetraphenylphosphonium (TPP+). Control experiments showed that this treatment did not impair the transmembrane pH, the cell energy charge, and the function of plasma membrane H+-ATPase. The kinetic data were fitted to elementary functions derived from a model constructed on the basis of some simplifying premises for ordered (either C + H+ + S or C + S + H+) and random reaction mechanisms. In addition, the comparison of the kinetic parameters in fully energized and depolarized cells provided information about the free carrier charge. It was concluded that the binding sequence of formation of the ternary carrier/H+/substrate complex follows a random mechanism and that the carrier bears a negative charge.  相似文献   

19.
The properties and kinetics of ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activities of plasma membrane H+-ATPase from the two reed ecot ypes, swamp reed (SR) and dune reed (DR), were investigated. The pH optimum of the plasma membrane H+-ATPase in both reed ecotypes was similar but the sensitivity of the enzyme to the reaction medium pH seemed to be higher in DR than that in SR. Compared to SR, the DR exhibited a higher Vmax value for ATP hydrolysis whereas the Km value was almost similar in both reed ecotypes. The PNPP hydrolysis of the plasma membrane H+-ATPase was also studied in both reed ecotypes at increasing PNPP concentrations. Km and Vmax for PNPP hydrolysis showed great differences in the two reed ecotypes and in DR the Km and Vmax values were 2- and 10-fold, respectively, higher than those in SR. The ATP hydrolysis activity of the plasma membrane was markedly inhibited by hydroxylamine in both reed ecotypes, and the percentage inhibition of ATP hydrolysis rate seemed higher in DR than that in SR. In addition, the structure or property of the C-terminal end of the plasma membrane H+-ATPase were also different in the two reed ecotypes. These data suggest that different isoforms of the plasma membrane H+-ATPase might be developed and involved in the adaptation of the plant to the long-term drought-prone habitat.This research was supported by Natural Science Foundation of China (No. 30270238 & No. 30470274) and the National Key Basic Research Special Funds of China (G1999011705).  相似文献   

20.
Michael R. Blatt 《Planta》1987,170(2):272-287
The membrane electrical characteristics of stomatal guard cells in epidermal strips from Vicia faba L. and Commelina communis L. were explored using conventional electrophysiological methods, but with double-barrelled microelectrodes containing dilute electrolyte solutions. When electrodes were filled with the customary 1–3 M KCl solutions, membrane potentials and resistances were low, typically decaying over 2–5 min to near-30 mV and <0.2 k·cm2 in cells bathed in 0.1 mM KCl and 1 mM Ca2+, pH 7.4. By contrast, cells impaled with electrodes containing 50 or 200 mM K+-acetate gave values of-182±7 mV and 16±2 k·cm2 (input resistances 0.8–3.1 G, n=54). Potentials as high as (-) 282 mV (inside negative) were recorded, and impalement were held for up to 2 h without appreciable decline in either membrane parameter. Comparison of results obtained with several electrolytes indicated that Cl- leakage from the microelectrode was primarily responsible for the decline in potential and resistance recorded with the molar KCl electrolytes. Guard cells loaded with salt from the electrodes also acquired marked potential and conductance responses to external Ca2+, which are tentatively ascribed to a K+ conductance (channel) at the guard cell plasma membrane.Measurements using dilute K+-acetate-filled electrodes revealed, in the guard cells, electrical properties common to plant and fungal cell membranes. The cells showed a high selectivity for K+ over Na+ (permeability ratio PNa/PK=0.006) and a near-Nernstian potential response to external pH over the range 4.5–7.4 (apparent PH/PK=500–600). Little response to external Ca2+ was observed, and the cells were virtually insensitive to CO2. These results are discussed in the context of primary, charge-carrying transport at the guard cell plasma membrane, and with reference to possible mechanisms for K+ transport during stomatal movements. They discount previous notions of Ca2+-and CO2-mediated transport control. It is argued, also, that passive (diffusional) mechanisms are unlikely to contribute to K+ uptake during stomatal opening, despite membrane potentials which, under certain, well-defined conditions, lie negative of the potassium equilibrium potential likely prevailing.Abbreviations and symbols EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 2-(N-morpholino) propanesulfornic acid - E equilibrium potential - Gm membrane conductance - Rin input resistance - Vm membrane potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号