首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was carried out in 1990 to guide the development of a protocol for assessing residential exposures of children to time-weighted-average (TWA) power-frequency magnetic fields. The principal goal of this dosimetry study was to determine whether area (i.e., spot and/or 24 h) measurements of power-frequency magnetic fields in the residences and in the schools and daycare centers of 29 children (4 months through 8 years of age) could be used to predict their measured personal 24-h exposures. TWA personal exposures, measured with AMEX-3D meters worn by subjects, were approximately log-normally distributed with both residential and nonresidential geometric means of 0.10 μT (1.0 mG). Between-subjects variability in residential personal exposure levels (geometric standard deviation of 2.4) was substantially greater than that observed for nonresidential personal exposure levels (1.4). The correlation between log-transformed residential and total personal exposure levels was 0.97. Time-weighted averages of the magnetic fields measured in children's bedrooms, family rooms, living rooms, and kitchens were highly correlated with residential personal exposure levels (r = 0.90). In general, magnetic field levels measured in schools and daycare centers attended by subjects were smaller and less variable than measured residential fields and were only weakly correlated with measured nonresidential personal exposures. The final measurement protocol, which will be used in a large US study examining the relationship between childhood leukemia and exposure to magnetic fields, contains the following elements: normal- and low-power spot magnetic field measurements in bedrooms occupied by subjects during the 5 years prior to the date of diagnosis for cases or the corresponding date for controls; spot measurements under normal and low power-usage conditions at the centers of the kitchen and the family room; 24-h magnetic-field recordings near subjects' beds; and wire coding using the Wertheimer-Leeper method. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    2.
    Residential electrical wiring safety practices in the US result in the possibility of a small voltage (up to a few tenths of a volt) on appliance surfaces with respect to water pipes or other grounded surfaces. This "open circuit voltage" (V(OC)) will cause "contact current" to flow in a person who touches the appliance and completes an electrical circuit to ground. This paper presents data suggesting that contact current due to V(OC) is an exposure that may explain the reported associations of residential magnetic fields with childhood leukemia. Our analysis is based on a computer model of a 40 house (single-unit, detached dwelling) neighborhood with electrical service that is representative of US grounding practices. The analysis was motivated by recent research suggesting that the physical location of power lines in the backyard, in contrast to the street, may be relevant to a relationship of power lines with childhood leukemia. In the model, the highest magnetic field levels and V(OC)s were both associated with backyard lines, and the highest V(OC)s were also associated with long ground paths in the residence. Across the entire neighborhood, magnetic field exposure was highly correlated with V(OC) (r = 0.93). Dosimetric modeling indicates that, compared to a very high residential level of a uniform horizontal magnetic field (10 mu T) or a vertical electric field (100 V/m), a modest level of contact current (approximately 18 mu A) leads to considerably greater induced electric fields (> 1 mV/m) averaged across tissue, such as bone marrow and heart. The correlation of V(OC) with magnetic fields in the model, combined with the dose estimates, lead us to conclude that V(OC) is a potentially important exposure with respect to childhood leukemia risks associated with residential magnetic fields. These findings, nonetheless, may not apply to residential service used in several European countries or to the Scandinavian studies concerned with populations exposed to magnetic fields from overhead transmission lines.  相似文献   

    3.
    In a specific case, the magnetic field generated in a building by a nearby power line is usually easy to calculate, although the accuracy of these calculations is sensitive to the quality of source information. To be able to study public health dimensions of magnetic field exposure (e.g., risk of cancer), it is necessary to evaluate the size and exposure of the population at risk. Relatively little quantitative information on public exposure to power-frequency magnetic fields of high-voltage power lines is available. This report describes residential exposure to magnetic fields from 110 kV, 220 kV, and 400 kV power lines in Finland at the national level, including 90% of the total line length in 1989. A geographical information system (GIS) was used to identify the buildings located near the power lines. After determining the distances between the lines and the buildings, historical data on load currents of these lines were used to calculate the magnetic fields. The residential magnetic field histories were then linked to the residents by means of a computerized central population register. The data obtained on personal exposure have also been utilized in a nationwide epidemiological study on magnetic field exposure of power lines and risk of cancer. The methods of exposure assessment and results of the number of buildings near 110 kV, 220 kV, and 400 kV power lines, their average annual magnetic fields, and personal exposure to magnetic fields from these lines are described. We found that 15,600 residents lived in an average residential magnetic field ≥0.1 μT caused by power lines in 1989. The number of these residents increased fivefold during 1970-1989. We estimated that 0.3% of the population was exposed in their residences to an annual average magnetic flux density from 110 kV, 220 kV, and 400 kV power lines higher than 0.1 μT, the level that the background magnetic flux density in general does not exceed in Finnish homes. Thus, the problem of magnetic field exposure generated by high-voltage lines concerns only a relatively small fraction of the total population in Finland. However, the size and exposure of the population at risk remain somewhat arbitrary in practical multisource situations, as the biological interaction mechanism, the concept of harmful dose, and, in particular, the significance of the duration of exposure are unknown. © 1995 Wiley-Liss, Inc.  相似文献   

    4.
    Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude.  相似文献   

    5.
    A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

    6.
    Much of the research and reviews on extremely low frequency (ELF) electric and magnetic fields (EMFs) have focused on magnetic rather than electric fields. Some have considered such focus to be inappropriate and have argued that electric fields should be part of both epidemiologic and laboratory work. This paper fills the gap by systematically and critically reviewing electric‐fields literature and by comparing overall strength of evidence for electric versus magnetic fields. The review of possible mechanisms does not provide any specific basis for focusing on electric fields. While laboratory studies of electric fields are few, they do not indicate that electric fields should be the exposure of interest. The existing epidemiology on residential electric‐field exposures and appliance use does not support the conclusion of adverse health effects from electric‐field exposure. Workers in close proximity to high‐voltage transmission lines or substation equipment can be exposed to high electric fields. While there are sporadic reports of increase in cancer in some occupational studies, these are inconsistent and fraught with methodologic problems. Overall, there seems little basis to suppose there might be a risk for electric fields, and, in contrast to magnetic fields, and with a possible exception of occupational epidemiology, there seems little basis for continued research into electric fields. Bioelectromagnetics 31:89–101, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

    7.
    A recent study examining the relationship between distance to nearby power lines and childhood cancer risk re‐opened the debate about which exposure metrics are appropriate for power frequency magnetic field investigations. Using data from two large population‐based UK and German studies we demonstrate that distance to power lines is a comparatively poor predictor of measured residential magnetic fields. Even at proximities of 50 m or less, the positive predictive value of having a household measurement over 0.2 µT was only 19.4%. Clearly using distance from power lines, without taking account of other variables such as load, results in a poor proxy of residential magnetic field exposure. We conclude that such high levels of exposure misclassification render the findings from studies that rely on distance alone uninterpretable. Bioelectromagnetics 30:183–188, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

    8.
    Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.  相似文献   

    9.
    We measured magnetic fields and two sources of contact current in 36 homes in Pittsfield, MA. The first source, V(P-W), is the voltage due to current in the grounding wire, which extends from the service panel neutral to the water service line. This voltage can cause contact current to flow upon simultaneous contact with a metallic part of the water system, such as the faucet, and the frame of an appliance, which is connected to the panel neutral through the equipment-grounding conductor. The second is V(W-E), the voltage between the water pipe and earth, attributable to ground currents in the water system and magnetic induction from nearby power lines. In homes with conductive water systems and drains, V(W-E) can produce a voltage between the faucet and drain, which may produce contact current into an individual contacting the faucet while immersed in a bathtub. V(P-W) was not strongly correlated to the magnetic field (both log transformed) (r = 0.28; P < 0.1). On the other hand, V(W-E) was correlated to the residential magnetic field (both log transformed) (r = 0.54; P < 0.001), with the highest voltages occurring in homes near high voltage transmission lines, most likely due to magnetic induction on the grounding system. This correlation, combined with both frequent exposure opportunity for bathing children and substantial dose to bone marrow resulting from contact, lead us to suggest that contact current due to V(W-E) could explain the association between high residential magnetic fields and childhood leukemia.  相似文献   

    10.
    11.
    The purpose of this paper is to review measurements of residential power-frequency magnetic fields made in different countries and to determine whether average magnetic fields away from appliances are higher in some countries than in others. The paper includes 27 studies reporting measurements of residential magnetic fields in samples of homes: 14 from North America, 5 from the United Kingdom, and 8 from other European countries. Various factors that might make the results from individual studies unrepresentative of average fields in the relevant country are identified and discussed. Because distributions of magnetic fields generally are approximately log-normal, they are summarised by their geometric means. The best estimate of the geometric means of long-term average background fields in the United States is 60-70 nT and in the United Kingdom approximately 36-39 nT. In other countries, there are insufficient studies to draw firm conclusions on average fields. Measurements of personal exposure are higher than measurements of background fields, perhaps because they include exposures from appliances and other sources in the home. The ratio of personal exposure to background field seems, on average, to be approximately 1.4.  相似文献   

    12.
    Some epidemiological studies suggest that exposure to power-frequency magnetic fields increases the risk of leukemia, especially in children with high residential exposures. In contrast, most animal studies did not find a correlation between magnetic-field exposure and hematopoietic diseases. The present study was performed to investigate whether chronic, high-level (1 mT) magnetic-field exposure had an influence on lymphoma development in a mouse strain that is genetically predisposed to thymic lymphoblastic lymphoma. Three groups of 160 unrestrained female AKR/J mice were sham-exposed or exposed to sinusoidal 50 Hz magnetic fields beginning at the age of 12 weeks for 32 weeks, 7 days per week, either for 24 h per day or only during nighttime (12 h). Exposure was carried out in a blind design. Exposure did not affect survival time, body weight, lymphoma development or hematological parameters. The resulting data do not support the hypothesis that exposure to sinusoidal 50 Hz magnetic fields is a significant risk factor for hematopoietic diseases, even at this relatively high exposure level.  相似文献   

    13.
    Ambient 60-Hz magnetic flux density in an urban neighborhood   总被引:1,自引:0,他引:1  
    A residential neighborhood in Buffalo, NY, was surveyed with a magnetic field meter to evaluate whether or not spot measurements are reliable predictors of the 60-Hz fields at street corners and residences. The results of repeated measurements over 7 days at 33 street corners in this neighborhood indicate that day-to-day variation in power line magnetic fields is negligible (intraclass correlation coefficient = 0.94). Multivariate linear regression analysis of the data indicates that transmission lines and thick, three-phase primary wires near the field measurement site are strong predictors and account for the majority of the ambient magnetic field variance between locations (multiple correlation coefficient squared = 0.60; F ratio = 22.2, P less than .001). Magnetic fields measured at the front sidewalk were highly correlated with fields at the front doorsteps of 45 homes in this neighborhood (gamma = 0.81). These results suggest that ambient power line magnetic field levels at urban residences can be reliably characterized on a one-time site inspection using a hand-held magnetic field meter and a simple wiring classification system.  相似文献   

    14.
    An epidemiological study conducted by Savitz et al. reported that residential wire codes were more strongly associated with childhood cancer than were measured magnetic fields, a peculiar result because wire codes were originally developed to be a surrogate for residential magnetic fields. The primary purpose of the study reported here, known as the Back to Denver (BTD) study, was to obtain data to help in the interpretation of the original results of Savitz et al. The BTD study included 81 homes that had been occupied by case and control subjects of Savitz et al., stratified by wire code as follows: 18 high current configuration (HCC) case homes; 20 HCC control homes; 20 low current configuration (LCC) case homes; and 23 LCC control homes. Analysis of new data acquired in these homes led to the following previously unpublished conclusions. The home-averaged (i.e., mean of fields measured in subjects' bedrooms, family/living rooms, and rooms where meals normally eaten) spot 60 Hz, 180 Hz, and harmonic (i.e., 60-420 Hz) magnetic fields were associated with wire codes. The 180 Hz and harmonic components, but not the 60 Hz component, were associated with case/control status. Measured static magnetic fields were only weakly correlated (rapproximately 0.2) between rooms in homes. The BTD data provide little support for, but are too sparse to definitively test, the 1995 resonance hypothesis proposed by Bowman et al. Case and control homes had similar concentrations of copper in their tap water. Copper concentration was not associated with wire codes nor with the level of electric current carried by a home's water pipe. These results of the BTD study suggest that future case/control studies investigating power frequency magnetic fields might wish to include measurements of 180 Hz or harmonic magnetic fields in order to examine their associations (if any) with disease status.  相似文献   

    15.
    It has been suggested that residential exposure to contact currents may be more directly associated with the potential for an increased risk of leukemia in childhood than magnetic fields. Contact current exposure occurs when a child contacts a bathtub's water fixtures, which are usually contiguous with a residence's electrical ground, and when the drainpipe is conductive. The Northern California Childhood Leukemia Study (NCCLS) is the only epidemiological study known to address whether contact current may confound the reported association between residential magnetic fields and childhood leukemia. The study contributed contact voltage and magnetic-field data for over 500 residences of leukemia cases and control children. We combined these data with the results of previous measurement studies of contact voltage in other communities to conduct an analysis of the relationship of magnetic fields with contact voltage for a total sample of 702 residences. The Spearman correlation of magnetic field with contact voltage was 0.29 (Spearman, P < 0.0001). Magnetic-field and contact voltage data were both divided into tertiles, with an upper magnetic-field cutpoint of 0.3 μT suggested by values used in epidemiological results and an upper contact voltage cutpoint of 60 mV based on dosimetric considerations. Expressed as an exposure odds ratios (EOR), we report an association of contact voltage with magnetic fields of 15.1 (95% CI 3.6-61) as well as a statistically significant positive trend across magnetic-field strata (EOR of 4.2 per stratum with 95% CI 2.4-7.4). The associations appear to be large enough to support the possibility that contact current could be responsible for the association of childhood leukemia with magnetic fields.  相似文献   

    16.
    Some epidemiological studies suggest that exposure to 50 or 60 Hz magnetic fields might increase the risk of leukemia, especially in children with a comparable high residential exposure. To investigate this possibility experimentally, the influence of 50 Hz magnetic-field exposure on lymphoma induction was determined in a mouse strain that is genetically predisposed to this disease. The AKR/J mouse genome carries the AK virus, which leads within 1 year to spontaneous development of thymic lymphoblastic lymphoma. Beginning at an age of 4-5 weeks, groups of 160 female mice were sham-exposed or exposed to 50 Hz magnetic fields at 1 or 100 microT for 24 h per day, 7 days per week, for 38 weeks. Animals were checked visually daily and were weighed and palpated weekly. There was no effect of magnetic-field exposure on body weight gain or survival rate, and lymphoma incidence did not differ between exposed and sham-exposed animals. Therefore, these data do not support the hypothesis that chronic exposure to 50 Hz magnetic fields is a significant risk factor for developing hematopoietic malignancy.  相似文献   

    17.
    The objectives of this study were to examine the association between contact current exposure and the risk of childhood leukemia and to investigate the relationship between residential contact currents and magnetic fields. Indoor and outdoor contact voltage and magnetic-field measurements were collected for the diagnosis residence of 245 cases and 269 controls recruited in the Northern California Childhood Leukemia Study (2000-2007). Logistic regression techniques produced odds ratios (OR) adjusted for age, sex, Hispanic ethnicity, mother's race and household income. No statistically significant associations were seen between childhood leukemia and indoor contact voltage level [exposure ≥90th percentile (10.5 mV): OR = 0.83, 95% confidence interval (CI): 0.45, 1.54], outdoor contact voltage level [exposure ≥90th percentile (291.2 mV): OR = 0.89, 95% CI: 0.48, 1.63], or indoor magnetic-field levels (>0.20 μT: OR = 0.76, 95% CI: 0.30, 1.93). Contact voltage was weakly correlated with magnetic field; correlation coefficients were r = 0.10 (P = 0.02) for indoor contact voltage and r = 0.15 (P = 0.001) for outdoor contact voltage. In conclusion, in this California population, there was no evidence of an association between childhood leukemia and exposure to contact currents or magnetic fields and a weak correlation between measures of contact current and magnetic fields.  相似文献   

    18.
    A physically based model for residential magnetic fields from electric transmission and distribution wiring was developed to reanalyze the Los Angeles study of childhood leukemia by London et al. For this exposure model, magnetic field measurements were fitted to a function of wire configuration attributes that was derived from a multipole expansion of the Law of Biot and Savart. The model parameters were determined by nonlinear regression techniques, using wiring data, distances, and the geometric mean of the ELF magnetic field magnitude from 24-h bedroom measurements taken at 288 homes during the epidemiologic study. The best fit to the measurement data was obtained with separate models for the two major utilities serving Los Angeles County. This model's predictions produced a correlation of 0.40 with the measured fields, an improvement on the 0.27 correlation obtained with the Wertheimer-Leeper (WL) wire code. For the leukemia risk analysis in a companion paper, the regression model predicts exposures to the 24-h geometric mean of the ELF magnetic fields in Los Angeles homes where only wiring data and distances have been obtained. Since these input parameters for the exposure model usually do not change for many years, the predicted magnetic fields will be stable over long time periods, just like the WL code. If the geometric mean is not the exposure metric associated with cancer, this regression technique could be used to estimate long-term exposures to temporal variability metrics and other characteristics of the ELF magnetic field which may be cancer risk factors.  相似文献   

    19.
    An international seminar was held June 4-6, 1997, on the biological effects and related health hazards of ambient or environmental static and extremely low frequency (ELF) electric and magnetic fields (0-300 Hz). It was cosponsored by the World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the German, Japanese, and Swiss governments. Speakers provided overviews of the scientific literature that were discussed by participants of the meeting. Subsequently, expert working groups formulated this report, which evaluates possible health effects from exposure to static and ELF electric and magnetic fields and identifies gaps in knowledge requiring more research to improve health risk assessments. The working groups concluded that, although health hazards exist from exposure to ELF fields at high field strengths, the literature does not establish that health hazards are associated with exposure to low-level fields, including environmental levels. Similarly, exposure to static electric fields at levels currently found in the living and working environment or acute exposure to static magnetic fields at flux densities below 2 T, were not found to have demonstrated adverse health consequences. However, reports of biological effects from low-level ELF-field exposure and chronic exposure to static magnetic fields were identified that need replication and further study for WHO to assess any possible health consequences. Ambient static electric fields have not been reported to cause any direct adverse health effects, and so no further research in this area was deemed necessary.  相似文献   

    20.
    Comparatively high exposures to power-frequency electric and magnetic fields produce established biological effects that are explained by accepted mechanisms and that form the basis of exposure guidelines. Lower exposures to magnetic fields (< 1 microT average in the home) are classified as "possibly carcinogenic" on the basis of epidemiological studies of childhood leukemia. This classification takes into consideration largely negative laboratory data. Lack of biophysical mechanisms operating at such low levels also argues against causality. We survey around 20 biophysical mechanisms that have been proposed to explain effects at such low levels, with particular emphasis on plausibility: the principle that to produce biological effects, a mechanism must produce a "signal" larger than the "noise" that exists naturally. Some of the mechanisms are impossible, and some require specific conditions for which there is limited or no evidence as to their existence in a way that would make them relevant to human exposure. Others are predicted to become plausible above some level of field. We conclude that effects below 5 microT are implausible. At about 50 microT, no specific mechanism has been identified, but the basic problem of implausibility is removed. Above about 500 microT, there are established or likely effects from accepted mechanisms. The absence of a plausible biophysical mechanism at lower fields cannot be taken as proof that health effects of environmental electric and magnetic fields are impossible. Nevertheless, it is a relevant consideration in assessing the overall evidence on these fields.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号