首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

2.
蒙古黄鼠(Citellus dauricus)松果腺的超微结构观察   总被引:3,自引:0,他引:3  
The distal part of pineal gland of the Mongolian ground squirrel was ultrastructurally studied. The gland was composed of low electron-dense parenchymal cells, among which glial cells, pigment cells, blood vessels and neural elements were occasionally interspersed. The pinealocytes contained numerous mitochondria, lysosomes, microtubules, microfilaments, Golgi apparatus and free ribosomes, as well as less prominent profiles of rough- and smooth-surfaced endoplasmic reticula and some cilia, centrioles, synaptic ribbons and few subsurface cisterns. Some pinealocytes were vacuolated. The content of the vacuoles released into the extracellular space by exocytosis could be observed. The gap junctions between pinealocytes were also observed. Of particular interest was that many mitochondria "fused together" and formed gap junction-like structure in about five percent pinealocytes. The pigment cell has a amorphous nucleus which contains many aggregated chromatin, its cell membrane has a few microvilli projecting into a central lumen, these features may indicated that this kind of cell differs either from the pinealocyte or astrocyte. There are axo-axonic synapses or axo-dendritic synapses between neuron processes or between neuron processes and pinealocytes.  相似文献   

3.
The pineal gland of normal and experimental female mink has been studied by light-, fluorescence- and electron microscopy. The general structure of the mink pineal is described. Two main cell types are recognized. One, termed pinealocyte, predominates in number. Though slight morphological differences (e.g. electron density of the cytoplasm and content of organelles) were observed, this study indicates that the pineal of mink only contains one single population of pinealocytes. The other, termed glial cell, inserted between the pinealocytes, is characterized by the presence of elongated processes, containing microfilaments. Different treatments (ovariectomy and LH—RH administration) and different endocrine states during the year induced morphological changes in the pinealocytes. A rich network of nerve fibres containing electron-dense granules (40–50 nm) is observed. Microspectrofluorometrically these fibres exhibit the spectral characteristics of cateholamines. All the pinealocytes show a yellow fluorescence. This cellular fluorophor shows the same microspectrofluorometric characteristics as does the fluorophor of serotonin. Occasionally, synaptic ribbons are observed in the perikaryon and the processes of the pinealocytes. A large number of cellular junctions between pinealocytes and endothelial cells is present. Their presumed function(s) are discussed. There is evidence of a blood-brain barrier within the mink pineal gland.  相似文献   

4.
Pévet  P.  Racey  P. A. 《Cell and tissue research》1981,216(2):253-271
Summary In the pineal gland of the pipistrelle bat two different populations of pinealocytes and glial cells were observed electron microscopically. The pinealocytes of populations I and II differ in their content of metabolically active cell organelles. In the pinealocytes of population I, granular vesicles originating from the Golgi apparatus were found in the perikaryon and especially in the endings of the pinealocyte processes. Granular vesicles appeared to be more numerous in hibernating nulliparous females. The pinealocytes of population II are characterized by the presence of small cytoplasmic vacuoles, probably originating from cisternae of the granular endoplasmic reticulum and containing flocculent material of moderate electron density. The classification of the pinealocytes belonging to population II is discussed.This collaboration was initiated with the aid of an SRC European short visit grant to P.A.R.The study was supported by the Foundation for Medical Research, the Netherlands (FUNGO, 13-35-33)  相似文献   

5.
蒙古黄鼠松果腺主要由低电子密度的松果腺细胞和少量的胶质细胞、含色素细胞、神经突起及血管等组成。松果腺细胞内含有大量的线粒体、溶酶体、微丝、高尔基器、游离核糖体及中等量的光面和粗面内质网。纤毛、中心粒、突触带和致密芯小泡很少。松果腺细胞之间及胶质细胞之间存在电突触。最新被观察到的是大约有5%松果腺细胞内的线粒体产生“融合”现象,形成类似电突触的结构。神经突起可形成轴—轴突触,轴—树突触,并与松果腺细胞形成突触。  相似文献   

6.
The pineal organs of 14-week-old domestic geese were investigated with light and electron microscopy. The pineals consisted of a wide distal part and a narrow middle-proximal one. The glands were attached to the intercommissural region via the choroid plexus. The pineal parenchyma was formed by round or elongated follicles. The follicular wall was composed predominantly by cells immunoreactive with antibodies against hydroxyindolo-O-methyltransferase (HIOMT) or glial fibrillary acid protein (GFAP). They formed two or more layers. HIOMT-positive elements were represented by elongated cells bordering the follicular lumen and oval cells located in the external layer of the follicular wall. These cells were identified in ultrastructural studies as rudimentary-receptor pinealocytes and secretory pinealocytes, respectively. Among rudimentary-receptor pinealocytes two types of cells, designed as A and B, were distinguished due to structural differences. Type A cells extended through the whole follicular wall and showed regular stratified distribution of organelles in well-recognizable zones with rough endoplasmic reticulum, the Golgi apparatus and mitochondria. Type B cells, like type A pinealocytes, contacted the pineal lumen and showed polarity of their internal structure. However, they were markedly shorter than the cells of type A and lacked stratified distribution of organelles. Secretory pinealocytes contained irregularly dispersed organelles. A prominent feature of all types of goose pinealocytes was the presence of numerous dense core vesicles. The population of GFAP-positive cells consisted of ependymal-like supporting cells and astrocyte-like cells.  相似文献   

7.
G M Lew 《Histochemistry》1989,91(1):43-46
A biotin-avidin immunoperoxidase method was used to localize a pineal TRH-like compound in histological sections. TRH-like immunoreactivity was observed in porcine, ovine and rodent pineal glands. The immunoreaction was located on positively stained cell bodies and cellular processes throughout the glands. The exact location of the TRH (in pinealocytes, glial cells, or both) as well as the physiologic significance of the immunoreactive material remain to be elucidated.  相似文献   

8.
Summary A biotin-avidin immunoperoxidase method was used to localize a pineal TRH-like compound in histological sections. TRH-like immunoreactivity was observed in porcine, ovine and rodent pineal glands. The immunoreaction was located on positively stained cell bodies and cellular processes throughout the glands. The exact location of the TRH (in pinealocytes, glial cells, or both) as well as the physiologic significance of the immunoreactive material remain to be elucidated.  相似文献   

9.
The pineal gland of the Mongolian gerbil consists of a superficial gland, stalk and deep pineal. The deep pineal differentiates postnatally. Histochemical studies of the superficial pineal gland indicate that it may be involved in the secretion of protein. Presumptive secretory material visualized by aldehyde fuchsin (AF) and chrome hematoxylin was observed along the course of blood vessels and among the pinealocytes. The distribution and texture of the AF-positive material was distinctive. It did not correspond to the pattern and texture of material stained with PAS, Sudan Black or acid orcein. Staining with AF was markedly reduced after incubation with trypsin, indicating that the AF-positive material is at least partially protein. The amount of stainable material increased with age. The AF-positive material was observed in what appeared to be interstitial or glial cells and processes, and in the processes of perivascular cells. Cells and fibrous processes with high non-specific esterase activity ("high-esterase cells") were observed among the pinealocytes and along the course of blood vessels. The distribution of the "high-esterase cells" and the morphology and texture of their esterase-containing processes were remarkably similar to the morphology and distribution of the material that stained with AF. It may be that the "high-esterase cells" contain AF-positive material. The "high-esterase cells" hydrolyzed both alpha-naphthyl acetate and alpha-naphthyl butyrate. The pinealocytes hydrolyzed only alpha-naphthyl acetate. The "high-esterase cells" appear to form a distinct class of cells within the superficial pineal gland. They are tentatively identified as a type of glial cell.  相似文献   

10.
The ultrastructure of the pineal gland of the wild-captured eastern chipmunk (Tamias striatus) was examined. A homogenous population of pinealocytes was the characteristic cellular element of the chipmunk pineal gland. Often, pinealocytes showed a folliclelike arrangement. Mitochondria, Golgi apparatus, granular endoplasmic reticulum, lysosomes, centrioles, dense-core vesicles, clear vesicles, glycogen particles, and microtubules were consistent components of the pinealocyte cytoplasm. The extraordinary ultrastructural feature of the chipmunk pinealocyte was the presence of extremely large numbers of “synaptic” ribbons. The number of “synaptic” ribbons in this species exceeded by a factor of five to 30 times that found in any species previously reported. In addition to pinealocytes, the pineal parenchyma contained glial cells (oligodendrocytes and fibrous astrocytes). Capillaries of the pineal gland of the chipmunk consisted of a fenestrated endothelium. Adrenergic nerve terminals were relatively sparse.  相似文献   

11.
In the adult palm squirrel, F. pennanti the pineal is a club shaped, elongated structure with a connective tissue capsule. It consists of various types of pinealocytes, glial cells, neurons, nerve fibres, blood vessels and connective tissue. Two types of pinealocytes could be identified by light microscopy. They are large rounded with centrally placed nucleus, and small rounded pinealocytes. They have medium sized processes stainable with Alcian blue, periodic acid Schiff and Nissl methods. The pinealocytes are not stainable with bromophenol blue. However, they are moderately stainable with PAS, Sudan black and Baker's acid hematin. Neurons are seen either singly or in groups with axonal processes. Cystic cavities often lined by cells are a normal feature of adult squirrel pineal, and the lining cells are both pinealocytes and glial cells. Often neuronal endings are seen terminating on these lining cells. PAS positive globules were also seen inside the cysts. In some squirrel pineals, fibrous cysts with an inner core of cells are also seen. Occasionally groups of lymphocytes were also encountered in the pineal. In the fetal pineal, the cells are both larger and smaller ones and arranged in a cortex and medulla pattern and no cystic cavities are seen. The third ventricle enters the base of the pineal as pineal recess.  相似文献   

12.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

13.
The electron microscopy of the epiphysis cerebri of the antarctic seal Leptonychotes weddelli revealed a highly organized organ. The general cytological characteristics of the pinealocytes and the glial cells are described. The capillary blood vessels are the nonfenestrated type. The organ is richly innervated by mainly unmyelinated nerve fibers. Most of the axons end in the inner part of the organ, around vessels, some of them in relation with pinealocytes. The significance of the findings is discussed.  相似文献   

14.
An ultrastructural study on the maturation of the parenchymal rabbit pineal cell types from the first postnatal day up to 120 days is presented. Two main cell types are distinguished from the first 24h of postnatal life. Pinealocytes of the types I and II display different developmental degrees. Both immature cell types are arranged in groups. In addition, type II pinealocytes form rosette-like structures. Both cell types progressively become isolated and display cell processes. The nucleus and the cytoplasm of type I pinealocytes are barely electrondense. During the postnatal period, the number of cytoplasmic organelles, cell processes and terminal clubs increase progressively. Terminal clubs are frequently seen near blood vessels. After 30 days, type I pinealocytes show characteristics of adult pinealocytes. However, the maturation of most type I pinealocytes does not complete until the 90th postnatal day. Type II pinealocytes present a fairly electrondense nucleus and cytoplasm. Mature forms can be seen after the 5th postnatal day. During the postnatal period, a close relationship is determined among type II pinealocytes and cell processes and terminal clubs of type I pinealocytes.  相似文献   

15.
16.
In the present work, the presence and distribution of astrocytes in the rat pineal stalk is investigated applying an immunohistochemical technique for the demonstration of glial fibrillary acidic protein (GFAP) on Epon-embedded semithin sections (0.5 micron thick). GFAP-immunoreactive cells are evenly and regularly distributed along the entire pineal stalk. The GFAP-immunoreactive cells display a stellate shape showing variable numbers of cell processes that are mainly oriented parallel to the longitudinal stalk axis. Astrocytic processes show a clear tendency to encircle the remaining elements of the pineal stalk; i.e., pinealocytes, nerve fibres and blood vessels. Furthermore, glial processes form a cover layer separating the stalk from surrounding anatomical structures.  相似文献   

17.
Calbindin antibodies have been used in neuroanatomical studies to give excellent cytoarchitecural staining and visualization of a Golgi-like cellular morphology. Calbindin-D28K immunoreactivity used in rat pineal gland as a marker detected two classes of pineal cells. One class of small cells representing exclusively glial cells was strongly immunoreactive, and presented a large variety of individual shapes. The majority were a pyramidal shape with one or more processes while others displayed a cytoplasmic lipid droplet. Some small cells occurred around pericapillary spaces. The second class of calbindin-D28K positive cells corresponding to type II pinealocytes were characterized by their large size and less intensive labelling. Type II pinealocytes were round or rectangular; the nucleus was infolded and large with a prominent nucleolus. These large cells were preferentially distributed in the vicinity of vessels and assembled in a cluster of more than ten cells. The lack of S-100 and myeloperoxidase immunoreactivities in large calbindin-D28K cells excluded their possible characterization as glial cells and mononuclear phagocytes, while their size (>15 m) excluded microglial cells. A sex difference was detected between large calbindin-D28K positive cells. The mean calculated number of large positive cells for males was 6361±1504 (n=8) compared to 2162±1235 (n=7) for females. No significative difference was detected between males and females for small calbindin-D28K positive cells.  相似文献   

18.
The pineal body and the retina of the neonatal Sprague-Dawley rat were studied by light and electron microscopy, and the morphologic differentiation of the parenchymal cells of the pineal body was compared with that of the developing photoreceptor cells of the retina. Between the ages of 4 and 12 days after birth, some of the developing pinealocytes were observed to become elongated and polarized, with their nuclei located at one pole. "Synaptic" ribbons were observed within the cell body. At the opposite pole the cells developed elongated cell processes that initially contained microtubules and ribosomes. These cell processes projected into luminal spaces and were attached by structures resembling zonulae adherentes to the adjacent cells. Extending from the tips of the cell processes, cilia with a 9 + 0 arrangement were observed. Lamellated and vesicular membranes were noted at the tips of the cilia. Such morphologic differentiation, however, could be observed only in rats younger than 17 days. Comparison of the morphologic features of the neonatal pinealocytes with those of the developing retinal photoreceptor cells showed much similarity. It is suggested that the pinealocytes of the neonatal rat undergo "photoreceptor-like" differentiation during a transient neonatal period. Such morphologic differentiation may provide an explanation for light-induced biochemical changes described in neonatal rats whose eyes had been enucleated.  相似文献   

19.
Summary Pinealocytes of female pigs were studied electron-microscopically and compared with those of other mammals. A prominent Golgi apparatus forming dense-cored vesicles was widely dispersed in the cytoplasm of the cell body. A very characteristic feature of the pig pinealocytes was the presence of membrane-bounded bodies showing wide variations in internal structure. Possible roles of the dense-cored vesicles and membrane-bounded bodies in secretory processes of pinealocytes are discussed.  相似文献   

20.
The development of the rabbit pineal gland has been studied by light and electron microscopy from the 1st to the 120th postnatal day. After 24 h of postnatal life, the pineal parenchyma is highly cellular, showing two identifiable cell types: pinealocytes I and II. Immature type II pinealocytes arrange either in cellular cords or clusters or forme rosette-like structures. At the 5th postnatal day, corticomedullar differentiation is established. Rosette-like structures and cellular cords are absent from the cortex. Along the postnatal period, nuclei of pinealocytes are set apart due to cytoplasmic widening and development of cell processes. These structures pervade the cellular cords and rosette-like structures formed by immature type II pinealocytes. Rosette-like structures are no longer seen beyond the 30th postnatal day, and cords of type II pinealocytes from the 90th postnatal day on. At this time, the rabbit pineal gland is considered to be histologically mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号