首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
三种群合作系统的全局渐近性态   总被引:2,自引:0,他引:2  
考虑三种群合作系统:dχi/dt=χi(b-∑j3=1αijχj),χi(0)>0,b>0,αij<0,i≠j,i,j=1,2,3,完整地分析了其全局渐近性态:证明了该系统不存在闭轨,给出了正平衡点存在且全局渐近稳定的充要条件,证明了若系统不存在正平衡点,则所有解均趋于无穷.  相似文献   

2.
The theory of spatial pattern formation via Turing bifurcations - wherein an equilibrium of a nonlinear system is asymptotically stable in the absence of dispersal but unstable in the presence of dispersal - plays an important role in biology, chemistry and physics. It is an asymptotic theory, concerned with the long-term behavior of perturbations. In contrast, the concept of reactivity describes the short-term transient behavior of perturbations to an asymptotically stable equilibrium. In this article we show that there is a connection between these two seemingly disparate concepts. In particular, we show that reactivity is necessary for Turing instability in multispecies systems of reaction-diffusion equations, integrodifference equations, coupled map lattices, and systems of ordinary differential equations.  相似文献   

3.
The demography and infection age play an important role in the spread of slowly progressive diseases. To investigate their effects on the disease spreading, we propose a pairwise epidemic model with infection age and demography on dynamic networks. The basic reproduction number of this model is derived. It is proved that there is a disease-free equilibrium which is globally asymptotically stable if the basic reproduction number is less that unity. Besides, sensitivity analysis is performed and shows that increasing the variance in recovery time and decreasing the variance in infection time can effectively control the diseases. The complex interaction between the death rate and equilibrium prevalence suggests that it is imperative to correctly estimate the parameters of demography in order to assess the disease transmission dynamics accurately. Moreover, numerical simulations show that the endemic equilibrium is globally asymptotically stable.  相似文献   

4.
具有一般形式饱和接触率SEIS模型渐近分析   总被引:13,自引:4,他引:9  
研究具有一般形式饱和接触率SEIS模型渐近性态,得到决定疾病绝灭和持续的阈值-基本再生数R0。当R0 ≤ 1时,仅存在无病平衡点P^0;当R0>1时,除存在无病平衡点P^0外,还存在惟一的地方病平衡点P^*。当R0<1时,无病平衡点P^0全局渐近稳定;当R0>1时,地方病平衡点P^*局部渐近稳定。特别地,无因病死亡时,极限方程地方病平衡点P^-*全局渐近稳定。  相似文献   

5.
We generalize to n patches the Ross-Macdonald model which describes the dynamics of malaria. We incorporate in our model the fact that some patches can be vector free. We assume that the hosts can migrate between patches, but not the vectors. The susceptible and infectious individuals have the same dispersal rate. We compute the basic reproduction ratio R(0). We prove that if R(0)1, then the disease-free equilibrium is globally asymptotically stable. When R(0)>1, we prove that there exists a unique endemic equilibrium, which is globally asymptotically stable on the biological domain minus the disease-free equilibrium.  相似文献   

6.
A haploid model is introduced and analyzed in which intraspecific competition is incorporated within a density dependent framework. It is assumed that each genotype has a unique carrying capacity corresponding to the equilibrium population size when fixed for that type. Each genotypic fitness at a single multi-allelic locus is a function of a distinctive effective population size formed by adding the numbers of each genotype present, weighted by an intraspecific competition coefficient. As a result, the fitnesses depend upon the relative frequencies of the various genotypes as well as the total population size. Intergenotypic interactions can have a profound effect upon the outcome of the population. In particular, when the density effect of one individual upon another depends upon their respective genotypes, a unique stable interior equilibrium is possible in which all alleles are present. This stands in contrast to the purely density dependent haploid system in which the only possible stable state corresponds to fixation for the type with the highest carrying capacity. In the present model selective advantage is determined by a balance between carrying capacity and sensitivity to density pressures from other genotypes. Fixation for the genotype with the highest carrying capacity, for instance, will not be stable if it exerts a sufficiently weak competitive effect upon the other genotypes. In the diallelic case, maintenance of both alleles at a stable equilibrium requires that the net intragenotypic competition between individuals of like genotype be stronger than that between unlike types. As for purely density regulated systems, there may be no stable equilibria and/or regular and chaotic cycling may occur. The results may also be interpreted in terms of a discrete time model of interspecific competition with each haplotype representing a different species.  相似文献   

7.
基于传统的SIR传染病模型,本文提出了一类具有非线性发生率的带时滞的传染病模型,得出了当S0〈T= μ2+λ/β,对任意的时间滞后^,无病平衡点岛是局部渐近稳定的;当S0〉 μ2+λ/β,无病平衡点E0是不稳定的,此时,正平衡点E+是局部渐近稳定的.  相似文献   

8.
In this paper, we rigorously analyse an ordinary differential equation system that models fighting the HIV-1 virus with a genetically modified virus. We show that when the basic reproduction ratio ?(0)<1, then the infection-free equilibrium E (0) is globally asymptotically stable; when ?(0)>1, E (0) loses its stability and there is the single-infection equilibrium E (s). If ?(0)∈(1, 1+δ) where δ is a positive constant explicitly depending on system parameters, then the single-infection equilibrium E (s) that is globally asymptotically stable, while when ?(0)>1+δ, E (s) becomes unstable and the double-infection equilibrium E (d) comes into existence. When ?(0) is slightly larger than 1+δ, E (d) is stable and it loses its stability via Hopf bifurcation when ?(0) is further increased in some ways. Through a numerical example and by applying a normal form theory, we demonstrate how to determine the bifurcation direction and stability, as well as the estimates of the amplitudes and the periods of the bifurcated periodic solutions. We also perform numerical simulations which agree with the theoretical results. The approaches we use here are a combination of analysis of characteristic equations, fluctuation lemma, Lyapunov function and normal form theory.  相似文献   

9.
We model bioeconomic interrelations between a commercial fishery and an aquaculture industry by using a dynamical systems theory approach. The biomass follows a logistic growth where the pollution emerging from aquaculture is accounted for by means of a retardation term. We investigate the existence and stability of the equilibrium states of this model as a function of the growth-retardation parameter and find that a necessary (but not sufficient) condition for stability is low and moderate values of the emission-remediation ratio. Three intervals of the growth-retardation parameter are identified in this regime of the emission-remediation ratio. The regime of low and negligible influence of the pollution on the biomass evolution gives rise to the existence of an asymptotically stable equilibrium state characterized by a finite biomass and a finite effort in the fishery. In the same regime we identify two unstable equilibrium states of which the former one is characterized by no effort in the fishery, whereas the latter one is characterized by no biomass and no effort. When the growth retardation parameter exceeds a certain threshold, the fishery becomes unprofitable and the equilibrium state characterized by no effort in the fishery becomes asymptotically stable. By a further increase in this parameter above a higher threshold value, also the biomass is wiped out and the equilibrium state characterized by no biomass and no effort becomes asymptotically stable.  相似文献   

10.
具非线性饱和功能反应的捕食者-食饵系统的定性分析   总被引:1,自引:0,他引:1  
王政 《生物数学学报》2007,22(2):215-218
研究了一类具有非线性饱和功能反应的捕食者—食饵系统的定性行为.结果表明:当正平衡点稳定时,系统为全局渐近稳定的;当正平衡点不稳定时,系统存在唯一稳定的极限环.  相似文献   

11.
Using Liapunov's direct method, effects of dispersal on the linear and nonlinear stability of the endemic equilibrium state of the system governing the spread of gonorrhea are investigated. It is noted that the equilibrium state, which is nonlinearly asymptotically stable in the feasible region of the phase plane in the absence of dispersal, remains so with self-dispersal also (cross-dispersal being absent). However, in the presence of both self- and cross-dispersal, the equilibrium state can still remain nonlinearly asymptotically stable in the entire feasible region provided a certain condition involving self- and cross-dispersal coefficients is satisfied. It is also seen in this case that, for the linearly stable equilibrium state, there exists a subregion of the feasible region where it is nonlinearly asymptotically stable.  相似文献   

12.
In this work, we study a several species aerobic chemostat model with constant recycle sludge concentration in continuous culture. We reduce the number of parameters by considering a dimensionless model. First, the existence of a global positive uniform attractor for the model with different removal rates is proved using the theory of dissipative dynamical systems. Hence, we investigate the asymptotic behavior of the model under small perturbations using methods of singular perturbation theory and we prove that, in the case of two species in competition, the unique equilibrium which is positive is globally asymptotically stable. Finally, we establish the link between the open problem of the chemostat with different removal rates and monotone functional responses, and our model when two species compete on the same nutrient. We give some numerical simulations to illustrate the results.  相似文献   

13.
Published hypotheses to account for habitat changes wrought by elephants begin from the assumption that elephant-forest systems possess a stable equilibrium point. The ‘elephant problem’ is conceived as a displacement of this equilibrium by man. Controversy centres around which human activities caused the dislocation of equilibrium and by which mechanisms these activities resulted in local high densities of the elephant Loxodonta africana. A study on elephant-forest relationships in the Luangwa Valley of Zambia casts doubt upon the basic assumption of these hypotheses and an alternative hypothesis is therefore offered. It begins from the opposite assumption–that there is no attainable natural equilibrium between elephants and forests in eastern and southern Africa. The relationship is viewed instead as a stable limit cycle in which elephants increase while thinning the forest and decline until reaching a low density that allows resurgence of the forest. This in turn triggers an increase of elephants and the cycle repeats. The period of the cycle, if the hypothesis is correct, is in the order of 200 years in the Luangwa Valley. The activities of man can impose an artificial equilibrium on the system such that trees and elephants are trapped at the low density phase of the cycle. When interference is relaxed, as with the conversion of an area to a national park, the cyclic relationship reasserts. The parameters of a system possessing a stable limit cycle need not differ in kind or interrelationship from those of a system with a stable equilibrium. Whether one or other outcome manifests may depend only on the numerical values of the parameters. If the elephant-forest system is characterized by a stable limit cycle the period and amplitude should change along a climatic gradient and may contract to a stable equilibrium in some climatic zones. A set of predictions is offered to facilitate rejection of the hypothesis.  相似文献   

14.
吴亭 《生态科学》2012,(1):32-35
应用生物数学理论研究生态平衡与可持续发展是生态系统的一个热门课题.在海洋渔业的捕捞过程中,既要保证生态平衡,又要使捕捞收益最大更是海洋渔业关注的重要课题.目前对离散系统的捕捞研究较少.运用离散差分方程的稳定性理论,讨论一类具有捕获的离散Leslic捕食-食饵种群的系统,获取正平衡点的局部渐近稳定的充分条件.通过构造适当的Liapunov函数,利用二元函数的泰勒展开式讨论正平衡点存在必全局稳定性的结果.利用函数的极值判定法讨论在维持稳定捕获前提下的最优捕获策略,来获取最优经济效益.最后,通过一个适当的例子及数值模拟的说明主要结果是合理的.给实际生产提供了理论依据,具有一定的指导意义.  相似文献   

15.
Phenomenological models represent a simplified approach to the study of complex systems such as host-parasitoid interactions. In this paper we compare the dynamics of three phenomenological models for host-parasitoid interactions developed by May (1978), May and Hassell (1981) and May et al. (1981). The essence of the paper by May and Hassell (1981) was to define a minimum number of parameters that would describe the interactions, avoiding the technical difficulties encountered when using models that involve many parameters, yet yielding a system of equations that could capture the essence of real world interactions in patchy environments. Those studies dealt primarily with equilibrium and coexistence phenomena. Here we study the dynamics through bifurcation analysis and phase portraits in a much wider range of parameter values, carrying the models beyond equilibrium states. We show that the dynamics can be either stable or chaotic depending on the location of a damping term in the equations. In the case of the stable system, when host density dependence acts first, a stable point is reached, followed by a closed invariant curve in phase space that first increases then decreases, finally returning to an asymptotically stable point. Chaos is not seen. On the other hand, when parasitoid attack occurs before host density dependence, chaos is inevitably apparent. We show, as did May et al. (1981) and stated earlier byWang and Gutierrez (1980), that the sequence of events in host-parasitoid interactions is crucial in determining their stability. In a chaotic state the size of the host (e.g., insect pests) population becomes unpredictable, frequently becoming quite large, a biologically undesirable outcome. From a mathematical point of view the system is of interest because it reveals how a strategically placed damping term can dramatically alter the outcome. Our study, reaching beyond equilibrium states, suggests a strategy for biological control different from that of May et al. (1981).  相似文献   

16.
Pest management through continuous and impulsive control strategies   总被引:1,自引:0,他引:1  
Zhang H  Jiao J  Chen L 《Bio Systems》2007,90(2):350-361
In this paper, we propose two mathematical models concerning continuous and, respectively, impulsive pest control strategies. In the case in which a continuous control is used, it is shown that the model admits a globally asymptotically stable positive equilibrium under appropriate conditions which involve parameter estimations. As a result, the global asymptotic stability of the unique positive equilibrium is used to establish a procedure to maintain the pests at an acceptably low level in the long term. In the case in which an impulsive control is used, it is observed that there exists a globally asymptotically stable susceptible pest-eradication periodic solution on condition that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its stability. Further, the existence of a nontrivial periodic solution is also studied by means of numerical simulation. Finally, the efficiency of continuous and impulsive control policies is compared.  相似文献   

17.
Understanding how predators affect prey populations is a fundamental goal for ecologists and wildlife managers. A well-known example of regulation by predators is the predator pit, where two alternative stable states exist and prey can be held at a low density equilibrium by predation if they are unable to pass the threshold needed to attain a high density equilibrium. While empirical evidence for predator pits exists, deterministic models of predator–prey dynamics with realistic parameters suggest they should not occur in these systems. Because stochasticity can fundamentally change the dynamics of deterministic models, we investigated if incorporating stochasticity in predation rates would change the dynamics of deterministic models and allow predator pits to emerge. Based on realistic parameters from an elk–wolf system, we found predator pits were predicted only when stochasticity was included in the model. Predator pits emerged in systems with highly stochastic predation and high carrying capacities, but as carrying capacity decreased, low density equilibria with a high likelihood of extinction became more prevalent. We found that incorporating stochasticity is essential to fully understand alternative stable states in ecological systems, and due to the interaction between top–down and bottom–up effects on prey populations, habitat management and predator control could help prey to be resilient to predation stochasticity.  相似文献   

18.
The trajectories of the dynamic system which regulates the competition between the populations of malignant cells and immune cells may tend to an asymptotically stable equilibrium in which the sizes of these populations do not vary, which is called tumor dormancy. Especially for lower steady-state sizes of the population of malignant cells, this equilibrium represents a desirable clinical condition since the tumor growth is blocked. In this context, it is of mandatory importance to analyze the robustness of this clinical favorable state of health in the face of perturbations. To this end, the paper presents an optimization technique to determine whether an assigned rectangular region, which surrounds an asymptotically stable equilibrium point of a quadratic systems, is included into the domain of attraction of the equilibrium itself. The biological relevance of the application of this technique to the analysis of tumor growth dynamics is shown on the basis of a recent quadratic model of the tumor–immune system competition dynamics. Indeed the application of the proposed methodology allows to ensure that a given safety region, determined on the basis of clinical considerations, belongs to the domain of attraction of the tumor blocked equilibrium; therefore for the set of perturbed initial conditions which belong to such region, the convergence to the healthy steady state is guaranteed. The proposed methodology can also provide an optimal strategy for cancer treatment.  相似文献   

19.
This paper studies a four dimensional system of time-autonomous ordinary differential equations which models the interaction of two diploid, diallelic populations with overlapping generations. The variables are two population densities and an allele frequency in each of the populations. For single species models, the existence of periodic solutions requires that the genotype fitness functions be both frequency and density dependent. But, for two species exhibiting a predator-prey interaction, two examples are presented where there exists asymptotically stable cycles with fitness functions only density dependent. In the first example, the Hopf bifurcation theorem is used on a two parameter, polynomial vector field. The second example has a Michaelis-Menten or Holling term for the interaction between predator and prey; and, for this example, the existence and uniqueness of limit cycles for a wide range of parameter values has been established in the literature.  相似文献   

20.
The evolution of the gene frequencies at a single multiallelic locus under the joint action of migration and viability selection with dominance is investigated. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. Underdominance and overdominance are excluded. If the degree of dominance is deme independent for every pair of alleles, then under the Levene model, the qualitative evolution of the gene frequencies (i.e., the existence and stability of the equilibria) is the same as without dominance. In particular: (i) the number of demes is a generic upper bound on the number of alleles present at equilibrium; (ii) there exists exactly one stable equilibrium, and it is globally attracting; and (iii) if there exists an internal equilibrium, it is globally asymptotically stable. Analytic examples demonstrate that if either the Levene model does not apply or the degree of dominance is deme dependent, then the above results can fail. A complete global analysis of weak migration and weak selection on a recessive allele in two demes is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号