首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear.  相似文献   

2.
Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.  相似文献   

3.
Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.  相似文献   

4.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil(-1), 3 to 3,300 mg of total Cr kg of soil(-1), and 1 to 17,100 mg of Pb kg of soil(-1). Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [(3)H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC(50) values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO(4)2- and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

5.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil−1, 3 to 3,300 mg of total Cr kg of soil−1, and 1 to 17,100 mg of Pb kg of soil−1. Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [3H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC50 values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO42− and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

6.
酸性矿山废水污染的水稻田土壤中重金属的微生物学效应   总被引:21,自引:1,他引:20  
采样调查了广东大宝山地区受酸性采矿废水长期污染的亚热带水稻田的土壤理化性质 ,重金属 Cu、Pb、Zn、Cd的全量及其 DTPA浸提量 ,以及微生物生物量及其呼吸活性等指标。利用主成分和逐步回归分析了影响土壤重金属的有效性及其微生物学效应的因素。结果表明 :土壤高含硫 ,强酸性 ,有机碳、全氮较低 ,4种金属的全量普遍超标。DTPA可提取态金属含量较高 ,不仅与其全量呈显著正相关 ,而且与土壤酸度和粘粒含量正相关 ,和 Mn含量负相关。过量的金属显著降低了土壤微生物生物量 C、N、微生物商、生物量 N/全 N比 ,并抑制了微生物呼吸强度和对有机碳的矿化率 ,导致了土壤 C/N比的升高。同时 ,金属对微生物群落及生理代谢指标 ,如微生物生物量 C/N比和代谢商的影响不显著。 DTPA可提取态金属 ,特别是 DTPA- Cu是导致微生物生物量和活性指标变化的主要因素。以有机碳 (或全氮 )为基数的复合微生物指标降低了土壤性质差异造成的干扰 ,较单一指标更能准确指示微生物对金属胁迫的反应。土壤硫没有对金属有效性和微生物指标产生明显影响 ,但其氧化过程可能引起酸化和金属离子的释放  相似文献   

7.
In an anthropogenically disturbed soil (88% sand, 8% silt, 4% clay), 150-mg samples were studied to examine the fine-scale relationship of bacterial activity and community structure to heavy metal contaminants. The soils had been contaminated for over 40 years with aromatic solvents, Pb, and Cr. Samples from distances of <1, 5, 15, and 50 cm over a depth range of 40–90 cm underwent a sequential analysis to determine metabolic potential (from 14C glucose mineralization), bacterial community structure [using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)], and total extractable Pb and Cr levels. Metabolic potential varied by as much as 10,000-fold in samples <1 cm apart; log–log plots of metal concentration and microbial metabolic potential showed no correlation with each other. Overall, metal concentrations ranged from 9 to 29,000 mg kg−1 for Pb and from 3 to 8500 mg kg−1 for Cr with small zones of high contamination present. All regions exhibited variable metal concentrations, with some soil samples having 30-fold differences in metal concentration in sites <1 cm apart. Geostatistical analysis revealed a strong spatial dependence for all three parameters tested (metabolic activity, Pb, and Cr levels) with a range up to 30 cm. Kriging maps showed that in zones of high metal, the corresponding metabolic activity was low suggesting that metals negatively impacted the microbial community. PCR-DGGE analysis revealed that diverse communities were present in the soils with a random distribution of phylotypes throughout the sampling zones. These results suggest the presence of spatially isolated microbial communities within the soil profile.  相似文献   

8.
The effects of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb) and zinc (Zn) on the biotransformation of organic acids (acetate, propionate and butyrate) and H2 were assessed in serum-bottle microcosms. Experiments were performed over a range of metal concentrations (20–200 mg/1) using biomass from an anaerobic bioreactor fed continuously with ethanol distillery waste as inoculum. In general, the added metals inhibited the biotransformation of organic acids with increasing metal concentration. However, the extent of inhibition varied for the different biotransformations and for the different metals tested. For example, the concentration of CuCl2 effecting a 50% reduction in the rate constant for biotransformation of acetate, propionate and butyrate was 60, 75 and 30 mg/1, respectively. Cu and Cr (VI) were the most inhibitory metals in organic acid transformation, whereas Pb was the least toxic. The rate of biotransformation of acetate was reduced by half at Cu and Cr concentrations of 60 and 40 gm/1 respectively, whereas Cd, Pb, and Zn concentrations of 160 to 200 mg/l had little effect. The activities of hydrogenotrophic methanogens were much less affected by the same metals and metal concentrations.  相似文献   

9.
The effects of naphthalene on microbial communities in the bottom boundary layer of the Delaware Bay estuary were investigated in microcosms using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) with oligonucleotide probes. Three days after the addition of naphthalene, rates of bacterial production and naphthalene mineralization were higher than in no-addition controls and than in cases where glucose was added. Analyses using both DGGE and FISH indicated that the bacterial community changed in response to the addition of naphthalene. FISH data indicated that a few major phylogenetic groups increased in response to the glucose addition and especially to the naphthalene addition. DGGE also demonstrated differences in community composition among treatments, with four phylotypes being unique to naphthalene-amended treatments and three of these having 16S rRNA genes similar to known hydrocarbon degraders. The bacterial community in the naphthalene-amended treatment was distinct from the communities in the glucose-amended treatment and in the no-addition control. These data suggest that polycyclic aromatic hydrocarbons may have large effects on microbial community structure in estuaries and probably on microbially mediated biogeochemical processes.  相似文献   

10.
Chromium is often found as a cocontaminant at sites polluted with organic compounds. For nitrate-respiring microbes, Cr(VI) may be not only directly toxic but may also specifically interfere with N reduction. In soil microcosms amended with organic electron donors, Cr(VI), and nitrate, bacteria oxidized added carbon, but relatively low doses of Cr(VI) caused a lag and then lower rates of CO2 accumulation. Cr(VI) strongly inhibited nitrate reduction; it occurred only after soluble Cr(VI) could not be detected. However, Cr(VI) additions did not eliminate Cr-sensitive populations; after a second dose of Cr(VI), bacterial activity was strongly inhibited. Differences in microbial community composition (assayed by PCR-denaturing gradient gel electrophoresis) driven by different organic substrates (glucose and protein) were smaller than when other electron acceptors had been used. However, the selection of bacterial phylotypes was modified by Cr(VI). Nine isolated clades of facultatively anaerobic Cr(VI)-resistant bacteria were closely related to cultivated members of the phylum Actinobacteria or Firmicutes. In Bacillus cereus GNCR-4, the nature of the electron donor (fermentable or nonfermentable) affected Cr(VI) resistance level and anaerobic nitrate metabolism. Our results indicate that carbon utilization and nitrate reduction in these soils were contingent upon the reduction of added Cr(VI). The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same organic substrate. We speculate that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.Chromium(VI) is a toxic metal that can negatively affect bioremediation of organic compounds in sites where chromium and organic pollutants cooccur (36). Under oxygen-limited conditions, chromium(VI) can be reduced (biologically or chemically) to insoluble and relatively nontoxic Cr(III) (22). Despite the potential interactions between biotic and chemical components, the responses of anaerobic microbial activities to Cr(VI) have not been well studied (6, 7, 42, 43).Under anaerobic conditions, an important factor in the catabolism of organic carbon is the availability of electron acceptors. Nitrate is of special interest because it is often found as a copollutant in contaminated soils (18). Nitrate-reducing bacteria are facultative anaerobes commonly found in environmental samples and can couple the reduction of nitrate to the oxidation of diverse organic substrates (10, 13). The effect of Cr(VI) on natural denitrifying communities or pure cultures of denitrifying bacteria is not well characterized (8, 29). The environmental effects of Cr(VI) on denitrification are of particular interest because in addition to acute toxicity to the cell, Cr(VI) may compete with nitrate as an electron acceptor (15, 30). However, in other denitrifying bacteria (for example, Staphylococcus spp.), no competitive interactions were reported (45).The purpose of this study was to extend our work on the effects of Cr(VI) upon microbes in soil that mediate discrete chemoheterotrophic processes such as the use of O2 (30) or Fe+3 (26) as terminal electron acceptors. We examined denitrification to determine whether the putative direct impact of Cr(VI) on the biochemistry of nitrate reduction would alter community dynamics from what had been observed with other terminal electron acceptors. In addition, we can add this data set to previous work to analyze the range of sensitivities to Cr(VI) that were found across a broad array of chemoheterotrophic processes.  相似文献   

11.
德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响   总被引:12,自引:2,他引:10  
【目的】为更好地了解重金属污染与微生物多样性之间的相互作用关系,以江西德兴铜矿4#尾砂库为研究对象,采集野外实地样品共16件进行分析(包括尾砂样品以及周围农田和菜地土壤样品)。【方法】一方面对样品中可培养异养细菌进行平板计数,一方面采用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)对样品中可培养和不可培养微生物分子生态多样性进行研究;同时采用PCA(Principle component analysis)方法分析样品理化性质、重金属及主要元素与可培养细菌数量及微生物多样性之间的相互关系。【结果】元素分析结果表明该尾矿区样品受到不同程度重金属Cu、Cd、Zn、Ni、Pb和Cr的污染;可培养异养细菌在尾砂样品中数量最少,在菜地和农田土壤样品中有明显增加;多样性指数(Shannon-Weaver index H)计算结果发现H最大值出现在距离尾矿中等距离、重金属浓度在中等程度的样品中。PCA分析结果表明可培养异养菌数量与理化性质如有机碳、有机质、含水率等相关性较大,重金属影响不明显;而多样性指数H除与上述理化性质相关性较大外,还受到重金属Ag、Zn、As、Pb、Ni、Cr等的影响,而在样品中含量普遍比较高的重金属如Cu、Cd等并不成为影响微生物多样性的主要因素。【结论】从这些长期受重金属污染的野外实地样品来看,以上结果说明不同重金属浓度对微生物多样性的影响可能并不是实验室研究的简单的线性关系。  相似文献   

12.
The combined effect of phenanthrene and Cr(VI) on soil microbial activity, community composition and on the efficiency of bioremediation processes has been studied. Biometer flask systems and soil microcosm systems contaminated with 2,000 mg of phenanthrene per kg of dry soil and different Cr(VI) concentrations were investigated. Temperature, soil moisture and oxygen availability were controlled to support bioremediation. Cr(VI) inhibited the phenanthrene mineralization (CO2 production) and cultivable PAH degrading bacteria at levels of 500–2,600 mg kg−1. In the bioremediation experiments in soil microcosms the degradation of phenanthrene, the dehydrogenase activity and the increase in PAH degrading bacteria counts were retarded by the presence of Cr(VI) at all studied concentrations (25, 50 and 100 mg kg−1). These negative effects did not show a correlation with Cr(VI) concentration. Whereas the presence of Cr(VI) had a negative effect on the phenanthrene elimination rate, co-contamination with phenanthrene reduced the residual Cr(VI) concentration in the water exchangeable Cr(VI) fraction (WEF) in comparison with the soil microcosm contaminated only with Cr(VI). Clear differences were found between the denaturing gradient gel electrophoresis (DGGE) patterns of each soil microcosm, showing that the presence of different Cr(VI) concentrations did modulate the community response to phenanthrene and caused perdurable changes in the structure of the microbial soil community.  相似文献   

13.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

14.
Aquifer sediments from Norman, Oklahoma, were used to study the potential for microbial reduction of Cr(VI) to Cr(III). Black, clay-like sediments rapidly reduced Cr(VI) in both autoclaved and viable microcosms, indicating an abiotic mechanism. Lightcolored sandy sediments slowly reduced Cr(VI) only in viable microcosms, indicating a biological process. Cr(VI) reduction in these sediments had a pH optimum of 6.8 and temperature optima of 22°C and 50°C. Nearly complete inhibition of Cr(VI) reduction was observed when sandy sediments were shaken in the presence of oxygen. The addition of nitrate but not sulfate, selenate, or ferrous iron to sandy sediments inhibited Cr(VI) reduction. When electron acceptors were supplied in combinations with Cr(VI), reduction of Cr(VI) was greatest in the absence of nitrate. No loss of sulfate and no production of Fe(II) occurred in the presence of Cr(VI). The addition of molybdate to the microcosms did not affect Cr(VI) reduction in sandy sediments until very high concentrations (40 times the Cr[VI] concentration) were used. Interestingly, the addition of bromoethanesulfonic acid in amounts less than, or slightly greater than, the Cr(VI) concentration partially inhibited Cr(VI) reduction in sandy sediments. In the absence of this bacterial inhibitor, the sandy sediments produced methane. A methanogenic enrichment capable of reducing Cr(VI) during growth was obtained from sandy sediments. However, the enrichment produced methane only when Cr(VI) was absent, indicating that a shift in electron flow from methane production to Cr(VI) reduction may have occurred. These studies showed that Cr(VI) reduction in sandy aquifer sediments is a biologically mediated, anaerobic process that is inhibited by oxygen and partially inhibited by nitrate. The lack of sulfate reduction and sulfide production, as well as a lack of inhibition of Cr(VI) reduction by molybdate, argues against an indirect mechanism for Cr(VI) reduction, in which the sulfide produced during sulfate reduction would chemically reduce Cr(VI). Rather, Cr(VI) reduction may be mediated by a community of microorganisms that ordinarily use methanogenesis as the terminal electron-accepting process.  相似文献   

15.
Surface soil containing 25,100 mg/kg total Cr [12,400 mg/kg Cr(VI)] obtained from a Superfund site was used in laboratory microcosm studies to evaluate the potential for aerobic reduction of Cr(VI) by the indigenous soil microbial community. Hexavalent chromium in soil was reduced by as much as 33% (from 1840 to 1240 mg/L) within 21 days under enrichment conditions. Reduction of Cr(VI) in this system was biologically mediated and depended on the availability of usable energy sources. Mass balance studies suggested that the microbial populations removed Cr(VI) from the soil solutions by reduction. Indigenous microbial soil communities even with no history of Cr(VI) contamination were capable of mediating this process. However, Cr(VI) removal was not observed when microbial populations from a sewage sludge sample were added to the soil microcosms. The results suggest that Cr(VI)-reducing microbial populations are widespread in soil, and thus the potential exists for in situ remediation of environmentally significant levels of Cr( VI) contamination.  相似文献   

16.
Abstract

This study investigated the effect of two organic amendments (compost of cattle ruminai content and Sphagnum-moss peat) on the reduction of hexavalent chromium and the distribution of this metal among the main solid phases of a soil with low organic matter content treated with different levels of Cr(VI) (0–2000 mg Cr kg?1 soil). At the same level of added organic carbon, the peat reduced Cr(VI) added to the soil from 250 to 2000 mg kg?1, with 100% efficiency. The reduction efficiency of the compost, however, decreased with the increasing dose of Cr(VI) soil. The distribution of Cr between the different soil components was evaluated by a sequential chemical extraction procedure. The concentration of water-soluble and exchangeable Cr decreased with the addition of organic amendments to the soil, whereas Cr increased in the organic fraction. The effect of added organic material on the Cr absorption was examined with two ornamental plants (Melissa officinalis and Begonia semperflorens). The increased Cr(VI) in the soil increased the Cr concentration in plant tissues. The addition of organic matter produced a greater aerial biomass for each level of added Cr in comparison with unamended soil. Sphagnum moss peat was more effective than the compost to decrease the total Cr and the Cr(VI) concentration in the water-soluble and exchangeable fraction of soil, thereby reducing the Cr accumulation in plants tissues and phytotoxic symptoms.  相似文献   

17.
The activation of natural bioremediation potentials is the challenge that research is currently addressing for overcoming bottlenecks still affecting bioremediation applications. Bioaugmentation is one possible way to activate such natural potentials, provided that the biodiversity introduced to increase catabolically relevant capacity is identified also considering the ecological context. The present work deals with bioaugmentation aimed at the remediation of a soil co-contaminated (spiked) with both diesel oil (1%, v/w), and heavy metals (Pb and Zn), using intact soil core microcosms in different experimental conditions. We supposed that both heavy metal resistance and active metabolism towards organic pollutants are essential metabolic traits to trap the energetic flux, which drives the microbial community towards biodegradation under the given experimental conditions. Consequently, the bioaugmentation was performed by introducing a tailor made microbial formula composed of 12 allochthonous strains. They belong to a stable population previously isolated from a chronic polluted site and are both hydrocarbon degraders and heavy metal resistant and, also, compatible with the autochthonous microbial community. The active role of the microbial formula in pushing the entire community towards an effective bioremediation of diesel oil close to 75%, in the presence of bioavailable metals, has been proven through hydrocarbons analysis, metabolic and molecular profiling at community level (Biolog system, DGGE).  相似文献   

18.
Total heavy metal concentrations in marine sediments are not sufficient to reliably predict detrimental biological effects. Here we provide evidence that only bioavailable heavy metals have a significant impact on benthic microbial loop functioning. Sediment samples collected along 250 km of the Apulian coast (Mediterranean Sea) were analysed for total and bioavailable heavy metals (Cr, Cd, Pb and Cu), organic matter content, bacterial abundance, biomass and carbon production and -glucosidase activity. Sampling strategy was specifically designed to cover a wide range of environmental conditions and types of anthropogenic influences. Total heavy metal concentrations in the sediments were tightly coupled with organic matter content, whereas bioavailable heavy metal concentrations displayed an opposite pattern. Bioavailable Cr concentrations were up to 10-fold higher than values observed for the other bioavailable metals and significantly inhibited benthic bacterial metabolism and turnover. Results from this study suggest that functional microbial variables are highly sensitive to heavy metal contamination and could be used as bioindicators of stress conditions in coastal sediments.  相似文献   

19.
The dynamics of the microbial food sources for Aedes triseriatus larvae in microcosms were found to be strongly influenced by larval presence. The total abundance of bacteria in water samples generally increased in response to larvae, including populations of cultivable, facultatively anaerobic bacteria. Additionally, a portion of the community shifted from Pseudomonaceae to Enterobacteriaceae. Bacterial abundance on leaf material was significantly reduced in the presence of actively feeding larvae. Principle-component analysis of whole community fatty acid methyl ester (FAME) profiles showed that larvae changed the microbial community structure in both the water column and the leaf material. Cyclopropyl FAMEs, typically associated with bacteria, were reduced in microcosms containing larvae; however, other bacterial fatty acids showed no consistent response. Long-chain polyunsaturated fatty acids characteristic of microeukaryotes (protozoans and meiofauna) declined in abundance when larvae were present, indicating that larval feeding reduced the densities of these microorganisms. However, presumed fungal lipid markers either increased or were unchanged in response to larvae. Larval presence also affected microbial nitrogen metabolism through modification of the physiochemical conditions or by grazing on populations of bacteria involved in nitrification-denitrification. Stemflow primarily influenced inorganic ion and organic compound concentrations in the microcosms and had less-pronounced effects on microbial community parameters than did larval presence. Stemflow treatments diluted concentrations of all inorganic ions (chloride, sulfate, and ammonium) and organic compounds (total dissolved organic carbon, soluble carbohydrates, and total protein) measured, with the exceptions of nitrite and nitrate. Stemflow addition did not measurably affect larval biomass in the microcosms but did enhance development rates and early emergence patterns of adults.  相似文献   

20.
Sixteen replicate microcosms were inoculated with a mixed assemblage of heterotrophic bacteria and provided with discrete pulses of protein as carbon and energy source. The dynamics of community structure were monitored by 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE). The results were consistent with a strong role for biological interactions in maintaining diversity. Replicate microcosms developed different microbial communities. For systems exposed to nutrient pulses every 7 days, the number of DGGE bands averaged 13 +/- 4 (mean +/- SD) and the Dice similarity coefficient between pairs ranged from 0.08 to 0.67. In each of 16 systems provided protein once each day, there were dynamic changes over the first 30 days but community composition was stable over the next 20 days. However, most systems differed from each other; two-thirds of the pairwise comparisons had similarity coefficients in the range of 0.35-0.63. These 16 systems contained 10 +/- 2 phylotypes (mean +/- SD) and in aggregate 34 phylotypes were found in the 16 systems. Most phylotypes were found in < 25% of the systems, and there were not strong networks of association among phylotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号