首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
转反义LeETR2基因番茄植株的表型与普通番茄有所不同。用乙烯25μL/L处理,转基因番茄能够表现出正常的“三重反应”,但根的伸长和根毛形成受到显著抑制。同时,转基因番茄植株对乙烯处理的偏上生长反应敏感度不及普通番茄,叶柄和花柄的脱落被延迟。这几方面的表型特点并不完全一致,我们推测LeETR2在番茄发育的不同阶段可能发挥不同的功能。  相似文献   

2.
Ethylene perception in plants is co-ordinated by multiple hormone receptor candidates sharing sequence commonalties with prokaryotic environmental sensor proteins known as two-component regulators. Two tomato homologs of the Arabidopsis ethylene receptor ETR1 were cloned from a root cDNA library. Both cDNAs, termed LeETR1 and LeETR2, were highly homologous to ETR1, exhibiting ~ 90% deduced amino acid sequence similarity and 80% deduced amino acid sequence identity. LeETR1 and LeETR2 contained all the major structural elements of two-component regulators, including the response regulator motif absent in LeETR3, the gene encoding tomato NEVER RIPE (NR). Using RNase protection analysis, the mRNAs of LeETR1, LeETR2 and NR were quantified in tissues engaged in key processes of the plant life cycle, including seed germination, shoot elongation, leaf and flower senescence, floral abscission, fruit set and fruit ripening. LeETR1 was expressed constitutively in all plant tissues examined. LeETR2 mRNA was expressed at low levels throughout the plant but was induced in imbibing tomato seeds prior to germination and was down-regulated in elongating seedlings and senescing leaf petioles. NR expression was developmentally regulated in floral ovaries and ripening fruit. Notably, hormonal regulation of NR was highly tissue-specific. Ethylene biosynthesis induced NR mRNA accumulation in ripening fruit but not in elongating seedlings or in senescing leaves or flowers. Furthermore, the abundance of mRNAs for all three LeETR genes remained uniform in multiple plant tissues experiencing marked changes in ethylene sensitivity, including the cell separation layer throughout tomato flower abscission.  相似文献   

3.
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein–protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro . Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea , which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.  相似文献   

4.
5.
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.  相似文献   

6.
7.
Ethylene is instrumental to climacteric fruit ripening and EIN3 BINDING F‐BOX (EBF) proteins have been assigned a central role in mediating ethylene responses by regulating EIN3/EIL degradation in Arabidopsis. However, the role and mode of action of tomato EBFs in ethylene‐dependent processes like fruit ripening remains unclear. Two novel EBF genes, SlEBF3 and SlEBF4, were identified in the tomato genome, and SlEBF3 displayed a ripening‐associated expression pattern suggesting its potential involvement in controlling ethylene response during fruit ripening. SlEBF3 downregulated tomato lines failed to show obvious ripening‐related phenotypes likely due to functional redundancy among SlEBF family members. By contrast, SlEBF3 overexpression lines exhibited pleiotropic ethylene‐related alterations, including inhibition of fruit ripening, attenuated triple‐response and delayed petal abscission. Yeast‐two‐hybrid system and bimolecular fluorescence complementation approaches indicated that SlEBF3 interacts with all known tomato SlEIL proteins and, consistently, total SlEIL protein levels were decreased in SlEBF3 overexpression fruits, supporting the idea that the reduced ethylene sensitivity and defects in fruit ripening are due to the SlEBF3‐mediated degradation of EIL proteins. Moreover, SlEBF3 expression is regulated by EIL1 via a feedback loop, which supposes its role in tuning ethylene signaling and responses. Overall, the study reveals the role of a novel EBF tomato gene in climacteric ripening, thus providing a new target for modulating fleshy fruit ripening.  相似文献   

8.
番茄果实中乙烯与多聚半乳糖醛酸酶的关系   总被引:6,自引:0,他引:6  
乙烯与多聚半乳糖醛酸酶(PG)都是果实成熟过程中关键的调节因子.一方面,在有乙烯合成缺陷的转反义ACS番茄和乙烯感受缺陷的Nr突变体番茄果实中PG基因表达量都明显下降,PG酶活性明显降低;用外源乙烯(100 μL/L)处理绿熟期番茄果实使PG基因的表达明显增强,而1-甲基环丙烯(1-MCP,1 μL/L)处理转色期番茄果实明显抑制PG基因表达.另一方面,转反义PG基因番茄果实乙烯释放量在授粉后低于其野生型,番茄乙烯受体基因LeETR4和乙烯反应因子LeERF2基因表达量比野生种低.PG降解果胶的产物D-GA(100 mg/L)促进未熟期番茄果实中的乙烯生成和LeETR4、LeERF2基因的表达.  相似文献   

9.
The never ripe mutation blocks ethylene perception in tomato.   总被引:19,自引:1,他引:18       下载免费PDF全文
Seedlings of tomato fruit ripening mutants were screened for their ability to respond to ethylene. Ethylene induced the triple response in etiolated hypocotyls of all tomato ripening mutants tested except for one, Never ripe (Nr). Our results indicated that the lack of ripening in this mutant is caused by ethylene insensitivity. Segregation analysis indicated that Nr-associated ethylene insensitivity is a single codominant trait and is pleiotropic, blocking senescence and abscission of flowers and the epinastic response of petioles. In normal tomato flowers, petal abscission and senescence occur 4 to 5 days after the flower opens and precede fruit expansion. If fertilization does not occur, pedicel abscission occurs 5 to 8 days after petal senescence. If unfertilized, Nr flowers remained attached to the plant indefinitely, and petals remained viable and turgid more than four times longer than their normal counterparts. Fruit development in Nr plants was not preceded by petal senescence; petals and anthers remained attached until they were physically displaced by the expanding ovary. Analysis of engineered 1-aminocyclopropane-1-carboxylate (ACC) synthase-overexpressing plants indicated that they are phenotypic opposites of Nr plants. Constitutive expression of ACC synthase in tomato plants resulted in high rates of ethylene production by many tissues of the plant and induced petiole epinasty and premature senescence and abscission of flowers, usually before anthesis. There were no obvious effects on senescence in leaves of ACC synthase overexpressers, suggesting that although ethylene may be important, it is not sufficient to cause tomato leaf senescence; other signals are clearly involved.  相似文献   

10.
Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity.  相似文献   

11.
Plants of tomato (Lycopersicon esculentum Mill. cv. T5) were transformed with an antisense endo-1,4--glucanase (cellulase, EC 3.2.1.4) Cel2 transgene under the control of the constitutive cauliflower mosaic virus 35S promoter in order to suppress mRNA accumulation of Cel2. In two independent transgenic lines, Cel2 mRNA abundance was reduced by >95% in ripe fruit pericarp and ca. 80% in fruit abscission zones relative to non-transgenic controls. In both transgenic lines the softening of antisense Cel2 fruit pericarp measured using stress-relaxation analysis was indistinguishable from control fruit. No differences in ethylene evolution were observed between fruit of control and antisense Cel2 genotypes. However, in fruit abscission zones the suppression of Cel2 mRNA accumulation caused a significant (P<0.001) increase in the force required to cause breakage of the abscission zone at 4 days post breaker, an increase of 27% in one transgenic line and of 46% in the other transgenic line. Thus the Cel2 gene product contributes to cell wall disassembly occurring in cell separation during fruit abscission, but its role, if any, in softening or textural changes occurring in fruit pericarp during ripening was not revealed by suppression of Cel2 gene expression.  相似文献   

12.
Analysis of the ethylene response in the epinastic mutant of tomato   总被引:1,自引:0,他引:1  
Ethylene can alter plant morphology due to its effect on cell expansion. The most widely documented example of ethylene-mediated cell expansion is promotion of the "triple response" of seedlings grown in the dark in ethylene. Roots and hypocotyls become shorter and thickened compared with controls due to a reorientation of cell expansion, and curvature of the apical hook is more pronounced. The epinastic (epi) mutant of tomato (Lycopersicon esculentum) has a dark-grown seedling phenotype similar to the triple response even in the absence of ethylene. In addition, in adult plants both the leaves and the petioles display epinastic curvature and there is constitutive expression of an ethylene-inducible chitinase gene. However, petal senescence and abscission and fruit ripening are all normal in epi. A double mutant (epi/epi;Nr/Nr) homozygous for both the recessive epi and dominant ethylene-insensitive Never-ripe loci has the same dark-grown seedling and vegetative phenotypes as epi but possesses the senescence and ripening characteristics of Never-ripe. These data suggest that a subset of ethylene responses controlling vegetative growth and development may be constitutively activated in epi. In addition, the epi locus has been placed on the tomato RFLP map on the long arm of chromosome 4 and does not demonstrate linkage to reported tomato CTR1 homologs.  相似文献   

13.
14.
Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric. In the nonabscising melon fruit PI 161375, exogenous ethylene failed to stimulate abscission, loss of firmness, ethylene production, and expression of all target genes tested. However, the PI 161375 etiolated seedlings displayed the usual ethylene-induced triple response. Genetic analysis on a population of recombinant cantaloupe Charentais x PI 161375 inbred lines in segregation for fruit abscission and ethylene production indicated that both characters are controlled by two independent loci, abscission layer (Al)-3 and Al-4. The non-climacteric phenotype in fruit tissues is attributable to ethylene insensitivity conferred by the recessive allelic forms from PI 161375. Five candidate genes (two ACO, two ACS, and ERS) that were localized on the melon genetic map did not exhibit colocalization with Al-3 or Al-4.  相似文献   

15.
The hypersensitive response (HR) involves rapid death of cells at the site of pathogen infection and is thought to limit pathogen growth through the plant. Ethylene regulates senescence and developmental programmed cell death, but its role in hypersensitive cell death is less clear. Expression of two ethylene receptor genes, NR and LeETR4, is induced in tomato (Lycopersicon esculentum cv. Mill) leaves during an HR to Xanthomonas campestris pv. vesicatoria, with the greatest increase observed in LeETR4. LeETR4 antisense plants previously were shown to exhibit increased sensitivity to ethylene. These plants also exhibit greatly reduced induction of LeETR4 expression during infection and an accelerated HR at inoculum concentrations ranging from 10(5) to 10(7) CFU/ml. Increases in ethylene synthesis and pathogenesis-related gene expression are greater and more rapid in infected LeETR4 antisense plants, indicating an enhanced defense response. Populations of avirulent X. campestris pv. vesicatoria decrease more quickly and to a lower level in the transgenic plants, indicating a greater resistance to this pathogen. Because the ethylene action inhibitor 1-methylcyclopropene alleviates the enhanced HR phenotype in LeETR4 antisense plants, these changes in pathogen response are a result of increased ethylene sensitivity.  相似文献   

16.
17.
18.
19.
20.
Myo-Inositol-Dependent Sodium Uptake in Ice Plant   总被引:39,自引:0,他引:39  
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号