首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of aldolase 1, the class-I D-fructose 1,6-bisphosphate aldolase (EC4.1.2.13) from Escherichia coli (Crookes' strain), showed it to have unusual kinetic and structural properties. The enzyme appeared to be larger than was previously supposed and may be a decamer with a mol. wt. of approx. 340000. Its fructose 1,6-bisphosphate-cleavage activity was unaffected by these compounds. The enhancement exhibited a strong dependence on pH. These novel kinetic properties do not seem to be shared by any other fructose 1,6-bisphosphate aldolase, but recall the activation by polycarboxylic acids of the deoxyribose 3-phosphate aldolases from some other organisms. In view of its unusual properties, it is unlikely that aldolase 1 from E. coli is closely related to the class-1 aldolases that have been detected in several other prokaryotes, or to the typical class-1 enzymes from eukaryotes.  相似文献   

2.
Two aldolases from the alga Cyanophora paradoxa (Glaucocystophyta) can be separated by chromatography on diethylaminoethyl-Fractogel. The two aldolases are inhibited by 1 mM ethylene-diaminetetraacetate (EDTA) and, therefore, are class II aldolases. When cells of C. paradoxa were fractionated, one aldolase was associated with the cytosol fraction and the other was associated with the cyanoplast fraction. The Km(fructose-1,6-bisphosphate) was 600 [mu]M for the cytosolic aldolase and 340 [mu]M for the cyanoplast aldolase. The activity of the cytosolic aldolase was increased up to 4-fold by 100 mM K+ and slightly inhibited by Li+ and Cs+, whereas the cyanoplast aldolase was not affected by these ions. Inactivation by 1 mM EDTA could be partly restored by the addition of Co2+ or Mn2+ and to a lesser extent by Zn2+ or Mg2+. The molecular masses of the native cytosolic and cyanoplast aldolases are about 90 and 85 kD, respectively, as estimated by velocity centrifugation in sucrose gradients. Implications for the evolution of class I and II aldolases in chloroplasts of higher plants and algae will be discussed.  相似文献   

3.
E. coli expression plasmids for human aldolases A and B (EC 4.1.2.13) have been constructed from the pIN-III expression vector and their cDNAs, and expressed in E. coli strain JM83. Enzymatically active forms of human aldolase have been generated in the cells when transfected with either pHAA47, a human aldolase A expression plasmid, or pHAB 141, a human aldolase B expression plasmid. These enzymes are indistinguishable from authentic enzymes with respect to molecular size, amino acid sequences at the NH2- and COOH-terminal regions, the Km for substrate, fructose 1,6-bisphosphate and the activity ratio of fructose 1,6-bisphosphate/fructose 1-phosphate (FDP/F1P), although net electric charge and the Km for FDP of synthetic aldolase B differed from those for a previously reported human liver aldolase B. In addition, both the expressed aldolases A and B complement the temperature-sensitive phenotype of the aldolase mutant of E. coli h8. These data argue that the expressed aldolases are structurally and functionally similar to the authentic human aldolases, and would provide a system for analysis of the structure-function relationship of human aldolases A and B.  相似文献   

4.
The plastidic class I and cytosolic class II aldolases of Euglena gracilis have been purified to apparent homogeneity. In autotrophically grown cells, up to 81% of the total activity is due to class I activity, whereas in heterotrophically grown cells, it is only 7%. The class I aldolase has been purified to a specific activity of 20 units/mg protein by anion-exchange chromatography, affinity chromatography, and gel filtration. The native enzyme (molecular mass 160 kD) consisted of four identical subunits of 40 kD. The class II aldolase was purified to a specific activity of 21 units/mg by (NH4)2SO4 fractionation, anion-exchange chromatography, chromatography on hydroxylapatite, and gel filtration. The native enzyme (molecular mass 80 kD) consisted of two identical subunits of 38 kD. The Km (fructose-1,6-bisphosphate) values were 12 [mu]M for the class I enzyme and 175 [mu]M for the class II enzyme. The class II aldolase was inhibited by 1 mM ethylenediaminetetraacetate (EDTA), 0.8 mM cysteine, 0.5 mM Zn2+, or 0.5 mM Cu2+. Na+, K+, Rb+, and NH4+ (but not Li+ or Cs+) enhanced the activity up to 7-fold. After inactivation by EDTA, the activity could be partially restored by Mn2+, Cu2+, or Co2+. A subclassification of class II aldolases is proposed based on (a) activation/inhibition by Cys and (b) activation or not by divalent ions.  相似文献   

5.
A fructose diphosphate aldolase has been isolated from ascarid muscle and crystallized by simple column chromatography and an ammonium sulfate fractionation procedure. It was found to be homogeneous on electrophoresis and Sephadex G-200 gel filtration. This enzyme has a fructose diphosphate/fructose 1-phosphate activity ratio close to 40 and specific activity for fructose diphosphate cleavage close to 11. Km values of ascarid aldolase are 1 × 10−6m and 2 × 10−3m for fructose diphosphate and fructose 1-phosphate, respectively. The enzyme reveals a number of catalytic and molecular properties similar to those found for class I fructose diphosphate aldolases. It has C-terminal functional tyrosine residues, a molecular weight of 155,000, and is inactivated by NaBH4 in presence of substrate. Data show the presence of two types of subunits in ascarid aldolase; the subunits have different electrophoretic mobilities but similar molecular weights of 40,000. Immunological studies indicate that the antibody-binding sites of the molecules of the rabbit muscle aldolase A or rabbit liver aldolase B are structurally different from those of ascarid aldolase. Hybridization studies show the formation of one middle hybrid form from a binary mixture of the subunits of ascarid and rabbit muscle aldolases. Hybridization between rabbit liver aldolase and ascarid aldolase was not observed. The results indicate that ascarid aldolase is structurally more related to the mammalian aldolase A than to the aldolase B.  相似文献   

6.
Both, class I (Schiff-base forming) and class II (metal requiring) fructose biphosphate aldolases were found to be distributed among halophilic archaebacteria. The aldolase activity fromHalobacterium halobium, H. salinarium, H. cutirubrum, H. mediterranei andH. volcanii exhibited properties of a bacterial class II aldolase as it was metal-dependent for activity and therefore inhibited by EDTA. In contrast, aldolase fromH. saccharovorum, Halobacterium R-113, H. vallismortis andHalobacterium CH-1 formed a Schiff-base intermediate with the substrate and therefore resembled to eukaryotic class I type. The type of aldolase did not vary by changes in the growth medium.  相似文献   

7.
The fructose-1,6-bisphosphate aldolase gene from the thermophilic bacterium, Anoxybacillus gonensis G2, was cloned and sequenced. Nucleotide sequence analysis revealed an open reading frame coding for a 30.9 kDa protein of 286 amino acids. The amino acid sequence shared approximately 80-90% similarity to the Bacillus sp. class II aldolases. The motifs that are responsible for the binding of a divalent metal ion and catalytic activity completely conserved. The gene encoding aldolase was overexpressed under T7 promoter control in Escherichia coli and the recombinant protein purified by nickel affinity chromatography. Kinetic characterization of the enzyme was performed at 60 degrees C, and K(m) and V(max) were found to be 576 microM and 2.4 microM min(-1) mg protein(-1), respectively. Enzyme exhibits maximal activity at pH 8.5. The activity of enzyme was completely inhibited by EDTA.  相似文献   

8.
Immunochemical studies using polyclonal antisera prepared individually against highly purified cytosolic and chloroplast spinach leaf (Spinacia oleracea) fructose bisphosphate aldolases showed significant cross reaction between both forms of spinach aldolase and their heterologous antisera. The individual cross reactions were estimated to be approximately 50% in both cases under conditions of antibody saturation using a highly sensitive enzyme-linked immunosorbent assay. In contrast, the class I procaryotic aldolase from Mycobacterium smegmatis and the class II aldolase from yeast (Saccharomyces cerevisiae) did not cross-react with either type of antiserum. The 29 residue long amino-terminal amino acid sequences of the procaryotic M. smegmatis and the spinach chloroplast aldolases were determined. Comparisons of these sequences with those of other aldolases showed that the amino-terminal primary structure of the chloroplast aldolase is much more similar to the amino-terminal structures of class I cytosolic eucaryotic aldolases than it is to the corresponding region of the M. smegmatis enzyme, especially in that region which forms the first “beta sheet” in the secondary structure of the eucaryotic aldolases. Moreover, results of a systematic comparison of the amino acid compositions of a number of diverse eucaryotic and procaryotic fructose bisphosphate aldolases further suggest that the chloroplast aldolase belongs to the eucaryotic rather than the procaryotic “family” of class I aldolases.  相似文献   

9.
10.
Two fructose-1,6-bisphosphate aldolases from the acido- and thermophilic red alga Galdieria sulphuraria were purified to apparent homogeneity and N-terminally microsequenced. Both aldolases had similar biochemical properties such as Km (FBP) (5.6-5.8 microM) and molecular masses of the native enzymes (165kDa) as determined by size exclusion chromatography. The subunit size of the purified aldolases, as determined by SDS-PAGE, was 42kDa for both aldolases. The isoenzymes were not inhibited by EDTA or affected by cysteine or potassium ions, implying that they belong to the class I group of aldolases, while other red algae are known to have one class I and one class II aldolase inhibited by EDTA. cDNA clones of the cytosolic and plastidic aldolases were isolated and sequenced. The gene for the cytosolic isoenzyme contained a 303bp untranslated leader sequence, while the gene for the plastidic isoenzyme exhibited a transit sequence of 56 amino-acid residues. Both isoenzymes showed about 48% homology in the deduced amino-acid sequences. A gene tree relates both aldolases to the basis of early eukaryotic class I aldolases. The phylogenetic relationship to other aldolases, particularly to cyanobacterial class II aldolases, is discussed.  相似文献   

11.
Spinach leaves and photoautotrophically grown Euglena and Chlorella possess fructose 1,6-diphosphate aldolases inhibited by p-chloromercuribenzoate but insensitive to K+ or ethylenediamine tetraacetate (Type I). Dark grown Euglena and Chlorella have aldolases inhibited by p-chloromercuribenzoate and ethylenediamine tetraacetate but stimulated by K+ (Type II). The red alga, Chondrus, and the golden-brown alga, Ochromonas, appear to possess both types. Bean, pea, and spinach seeds and the leaves and cotyledons of etiolated bean seedlings contain a p-chloromercuribenzoate insensitive, apparently non-sulfhydryl variant of Type I. Sensitivity of leaf aldolase to p-chloromercuribenzoate occurs in etiolated bean seedlings only after an extended period of illumination. Type II aldolase activity in cell-free extracts of 4 blue-green algae has been demonstrated.  相似文献   

12.
The Class II fructose 1,6-bisphosphate aldolase (fda, Rv0363c) from the pathogen Mycobacterium tuberculosis H37RV was subcloned in the Escherichia coli vector pT7-7 and purified to near homogeneity. The specific activity (35 U/mg) is approximately 9 times higher than previously reported for the enzyme partially purified from the pathogen. Attempts to express the enzyme with an N-terminal fusion tag yielded inactive, mostly insoluble protein. The native recombinant enzyme is zinc-dependent and has a catalytic efficiency for fructose 1,6-bisphosphate cleavage higher than most Class II aldolases characterized to date. The aldolase has a Km of 20 microM, a kcat of 21 s(-1), and a pH optimum of 7.8. The molecular mass of the enzyme subunits as determined by mass spectrometry is in agreement with the mass calculated on the basis of its gene sequence minus the terminal methionine, 36,413 Da. The enzyme is a homotetramer and retains only two zinc ions per tetramer when transferred to a metal-free buffer, as determined by ICP-MS and by a colorimetric assay using 4-(2-pyridylazo)-resorcinol (PAR) as a chelator. The E. coli expression system reported in this study will facilitate the further characterization of this enzyme and the screening for potential inhibitors.  相似文献   

13.
Abstract Both class I (Schiff base-forming) and class II (metal-requiring) fructose biphosphate (FDP) aldolases were found to be distributed among halophilic archaebacteria. The type of enzyme did not vary with the growth medium. The aldolase activities were also halophilic.  相似文献   

14.
Two Class I Aldolases in the Green Alga Chara foetida (Charophyceae)   总被引:1,自引:0,他引:1  
Aldolase activity of Chara foetida (Braun) could be separated into a minor (peak I) and a major peak (peak II) by ion-exchange chromatography on DEAE-cellulose. Affinity chromatography on P-cellulose resulted in highly purified aldolase preparations with specific activities of 3.2 and 4.8 units per milligram protein and molecular subunit masses of 37 and 35 kilodalton, as shown by SDS-PAGE, for the aldolase of peak I and peak II, respectively. Both aldolases belong to class I aldolase since the activity is not inhibited by 1 millimolar EDTA. The Km (fructose-1,6-bisphosphate) values were 0.64 and 13.4 micromolar, respectively. The aldolase of peak I showed a 6.7 times stronger crossreaction with a specific antiserum against the cytosol aldolase of spinach than with an antiserum against the chloroplast aldolase of spinach. On the other hand the aldolase of peak II showed a 5.1 times stronger cross-reaction with the α-plastidaldolase antiserum than with the α-cytosol-aldolase antiserum. For algae this is the first separation of two class I aldolases. They are similar to the cytosol and chloroplast aldolases in higher plants, but different from a reported class I (Me2+ independent) and class II (Me2+ dependent) aldolase in other algae.  相似文献   

15.
An aldolase was partially purified from fermenter grownMycobacterium tuberculosis H37Rv cells. The aldolase has a molecular weight of 150,000, possesses a tetrameric structure and cleaves both fructose diphosphate and fructose-1-phosphate, the former being cleaved 17 times faster. The enzyme was inactivated by treatment with NaBH4 in the presence of fructose diphosphate or dihydroxyacetone, phosphate suggesting Schiff base formation during its catalytic function. Thiol reagents, EDTA and metal ions had no apparent effect on the aldolase activity. These results show that aldolase is of Class I type. However, this enzyme, unlike the mammalian Class I aldolase, was unaffected by carboxypeptidase A. N-ethylmaleiniide and dithionitrobenzoic acid.  相似文献   

16.
Two fructose-bisphosphate aldolases(EC 4.1.2.13) from Klebsormidium flaccidum Silver, Mattox and Black-well were purified by affinity elution from phosphocellulose. The two enzymes were subsequently separated by HPLC on an anion-exchange column (QAE-silica). The aldolase eluting first represented 5% of the total activity; the other aldolase represented the remaining activity. The activity of the enzymes was not reduced by the presence of 1 mM EDTA or increased by 0.1 mM Zn2+, establishing their character as class I type (Me2+ independent) aldolases. The Km(fructose-1,6-bisphosphate) values were 1.7 and 34.7 μM for the enzyme eluting first and second, respectively, from the QAE-silica column. The subunit molecular masses, as determined by SDS-PACE, were 40.5 and 37 kD; the specific activities of the purified enzymes were 7.9 and 24.7 · mg?1 protein, respectively. The two aldolases of K. flaccidum are homologous to the cytosol and chloroplast specific isoenzymes of higher plants by several criteria and are therefore probably located in the same cellular compartments in K. flaccidum. The Km and specific activity for the chloroplast aldolase of K. flaccidum are three times higher than for the chloroplast aldolase of higher plants, a remarkable difference. Immunotitration with specific antisera against the chloroplast aldolase of Chlamydomonas reinhardtii Dangeard and spinach showed that the chloroplast aldolase of K. flaccidum was immunochemically intermediate in structure to the respective aldolases of C. reinhardtii and higher plants. K. flaccidum is the second species of Charophyceae (besides Chara foetida Braun) with two class I aldolases as in higher plants whereas two species of Chlorophyceae have only one class I aldolase and, under some conditions, an additional class II (Me2+ dependent) aldolase. Thus, aldolases may turn out, in addition to the known enzymes of glycolate conversion and urea degradation, be a novel enzyme system to evaluate algal evolution along with cytological features.  相似文献   

17.
Oxygen (18) was used as a mechanistic probe in the investigation of several different sources of fructose 1,6-bisphosphate aldolases (EC 4.1.2.13) which, due to differences in some physical and chemical properties, could not be clearly put in either Class I or Class II. Aldolases may be identified as belonging to a particular class on the basis of the amount of 180 retained in the dihydroxyacetone phosphate produced in the cleavage of [2-Oxygen (18)] fructose 1,6-biphosphate. The mechanism of Class I aldolases involves an obligatory exchange of the C-2 oxygen atom of fructose 1,6-bisphosphate, leading to the absence of 180 in the product. For Class II aldolases, the C-2 oxygen atom is retained in the aldol cleavage reaction. Aldolases from spinach and L. casei base intermediate. Aldosase from C. perfringens was found to be Class II, suggesting a metal-chelate intermediate. Results with Euglena aldolase confirmed that this organism contained both types of aldolases with approximately 78% Class II. The data show that despite a wide variety of physical and chemical properties, there are important mechanistic similarities within each class of enzyme and significant differences between the two classes. The determination of 180 retention in the product of the cleavage reaction using [2-180] fructose 1,6-biphosphate is an accurate means of classifying these enzymes since it is a measure of a property which is directly related to the mechanisms of the reactions.  相似文献   

18.
The aldolase of Francisella tularensis resembles Class II aldolases in its requirement for divalent ions and its inactivation by metal chelating agents. Cysteine and other reducing agents stimulated the activity of the enzyme.  相似文献   

19.
Fructaldolases (EC 4.1.2.13) are ancient enzymes of glycolysis that catalyze the reversible cleavage of phosphofructose esters into cognate triose (phosphates). Three vertebrate isozymes of Class I aldolase have arisen by gene duplication and display distinct activity profiles with fructose 1,6-bisphosphate and with fructose 1-phosphate. We describe the biochemical and biophysical characterization of seven natural human aldolase B variants, identified in patients suffering from hereditary fructose intolerance and expressed as recombinant proteins in E. coli, from which they were purified to homogeneity. The mutant aldolases were all missense variants and could be classified into two principal groups: catalytic mutants, with retained tetrameric structure but altered kinetic properties (W147R, R303W, and A337V), and structural mutants, in which the homotetramers readily dissociate into subunits with greatly impaired enzymatic activity (A149P, A174D, L256P, and N334K). Investigation of these two classes of mutant enzyme suggests that the integrity of the quaternary structure of aldolase B is critical for maintaining its full catalytic function.  相似文献   

20.
Escherichia coli, Salmonella enterica, Klebsiella pneumoniaeand Klebsiella oxytocawere found to contain two D-tagatose 1,6-bisphosphate (TagBP)-specific aldolases involved in catabolism of galactitol (genes gatY gatZ) and of N-acetyl-galactosamine and D-galactosamine (genes kbaY kbaZ,also called agaY agaZ). The two aldolases were closely related (> or = 53.8% identical amino acids) and could substitute for each other in vivo. The catalytic subunits GatY or KbaY alone were sufficient to show aldolase activity. Although substantially shorter than other aldolases (285 amino acids, instead of 358 and 349 amino acids), these subunits contained most or all of the residues that have been identified as essential in substrate/product recognition and catalysis for class II aldolases. In contrast to these, both aldolases required subunits GatZ or KbaZ (420 amino acids) for full activity and for good in vivo and in vitro stability. The Z subunits alone did not show any aldolase activity. Close relatives of these new TagBP aldolases were found in several gram-negative and gram-positive bacteria, e.g., Streptomyces coelicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号