首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We summarize several computational techniques to determine relative free energies for condensed-phase systems. The focus is on practical considerations which are capable of making direct contact with experiments. Particular applications include the thermodynamic stability of apo- and holo-myoglobin, insulin dimerization free energy, ligand binding in lysozyme, and ligand diffusion in globular proteins. In addition to provide differential free energies between neighboring states, converged umbrella sampling simulations provide insight into migration barriers and ligand dissociation barriers and analysis of the trajectories yield additional insight into the structural dynamics of fundamental processes. Also, such simulations are useful tools to quantify relative stability changes for situations where experiments are difficult. This is illustrated for NO-bound myoglobin. For the dissociation of benzonitrile from lysozyme it is found that long umbrella sampling simulations are required to approximately converge the free energy profile. Then, however, the resulting differential free energy between the bound and unbound state is in good agreement with estimates from molecular mechanics with generalized Born surface area simulations. Furthermore, comparing the barrier height for ligand escape suggests that ligand dissociation contains a non-equilibrium component.  相似文献   

2.
Photoreceptors for biosynthesis, energy storage and vision   总被引:3,自引:1,他引:3  
Abstract Living organisms use light as a source of energy and as a means of obtaining information about their environment. Photoreactivating enzyme, provitamins D, retinal (rhodopsins and bacteriorhodopsin), porphyrins (chlorophyll, protochlorophyll and heme), photosynthetic accessory pigments (carotenoids and bilins), phytochrome and riboflavin: these are the molecules which life has settled upon to play the role of light receptor. For some of these photoreceptor molecules a great deal is now known about the chemistry which they perform upon absorbing light; for others virtually nothing is known. Riboflavin, the molecule believed to be functioning in a variety of organisms as the receptor for physiological responses to blue light, is an especially interesting case. Its widespread occurrence in cellular roles other than photoreception make it difficult to separate out the particular flavin which functions as the photoreceptor. It represents a case of a photoreceptor which is at once ubiquitous and elusive.  相似文献   

3.
Post-translational maturation of cytochromes c involves the covalent attachment of heme to the Cys-Xxx-Xxx-Cys-His motif of the apo-cytochrome. For this process, the two cysteines of the motif must be in the reduced state. In bacteria, this is achieved by dedicated, membrane-bound thiol-disulfide oxidoreductases with a high reducing power, which are essential components of cytochrome c maturation systems and are also linked to cellular disulfide-bond formation machineries. Here we report high-resolution structures of oxidized and reduced states of a soluble, functional domain of one such oxidoreductase, ResA, from Bacillus subtilis. The structures elucidate the structural basis of the protein's high reducing power and reveal the largest redox-coupled conformational changes observed to date in any thioredoxin-like protein. These redox-coupled changes alter the protein surface and illustrate how the redox state of ResA predetermines to which substrate it binds. Furthermore, a polar cavity, present only in the reduced state, may confer specificity to recognize apo-cytochrome c. The described features of ResA are likely to be general for bacterial cytochrome c maturation systems.  相似文献   

4.
5.
6.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

7.
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.  相似文献   

8.
The design of slice selective pulses for magnetic resonance imaging can be cast as an optimal control problem. The Fourier synthesis method is an existing approach to solve these optimal control problems. In this method the gradient field as well as the excitation field are switched rapidly and their amplitudes are calculated based on a Fourier series expansion. Here, we provide a novel insight into the Fourier synthesis method via representing the Bloch equation in spherical coordinates. Based on the spherical Bloch equation, we propose an alternative sequence of pulses that can be used for slice selection which is more time efficient compared to the original method. Simulation results demonstrate that while the performance of both methods is approximately the same, the required time for the proposed sequence of pulses is half of the original sequence of pulses. Furthermore, the slice selectivity of both sequences of pulses changes with radio frequency field inhomogeneities in a similar way. We also introduce a measure, referred to as gradient complexity, to compare the performance of both sequences of pulses. This measure indicates that for a desired level of uniformity in the excited slice, the gradient complexity for the proposed sequence of pulses is less than the original sequence.  相似文献   

9.
10.
Oza JP  Sowers KR  Perona JJ 《Biochemistry》2012,51(12):2378-2389
Hydrogenotrophic methanogens possessing the hydrogen-dependent dehydrogenase Hmd also encode paralogs of this protein whose function is poorly understood. Here we present biochemical evidence that the two inactive Hmd paralogs of Methanocaldococcus jannaschii, HmdII and HmdIII, form binary and ternary complexes with several components of the protein translation apparatus. HmdII and HmdIII, but not the active dehydrogenase Hmd, bind with micromolar binding affinities to a number of tRNAs and form ternary complexes with tRNA(Pro) and prolyl-tRNA synthetase (ProRS). Fluorescence spectroscopy experiments also suggest that binding of HmdII and ProRS involves distinct binding determinants on the tRNA. These biochemical data suggest the possibility of a regulatory link between energy production and protein translation pathways that may allow a rapid cellular response to altered environmental conditions.  相似文献   

11.
The effects of polynucleotide templates on the self-condensations in water and in pyridine of 2′ (and 3′)-O-glycyladenosine, 2′ (and 3′)-O-glycyluridine, and 5′-glycyladenylate were studied. Poly(U) template was found to have a favorable effect on the self-condensations of glycine esters of adenosine and adenylate in both media.  相似文献   

12.
13.
Met-tRNAfMet from Escherichia coli is utilized efficiently as an elongator tRNA during protein synthesis in the rabbit reticulocyte lysate since it rapidly incorporates its methionyl residue into the same tryptic peptides of rabbit globin as the endogenous Met-tRNAmMet. Therefore, it must lack the structural characteristics that prevent the eukaryotic initiator tRNA from entering elongation. In contrast, E. coli Met-tRNAfMet appears to initiate very poorly since, unlike reticulocyte Met-tRNAiMet, it forms no detectable 43 S preinitiation complexes, and only a very small fraction of the methionine it contributes to polyribosomal peptidyl-tRNA is found at the N terminus. The bacterial fMet-tRNAfMet, which cannot elongate, is utilized for polypeptide chain initiation at a much lower level than the formylated Met-tRNAiMet from eukaryotes. The ability of E. coli Met-tRNAfMet to be used as an elongator and fMet-tRNAfMet as an initiator in the reticulocyte lysate may be considerably underestimated because of the rapid enzymatic hydrolysis of these initiator tRNAs in the lysate. The enzyme hydrolyzes fMet-tRNAfMet and Met-tRNAfMet from E. coli in a strictly Mg2+-dependent manner but not the corresponding species from yeast or rabbit reticulocytes. It also hydrolyzes yeast N-acetyl-Phe-tRNAPhe and reticulocyte peptidyl-tRNA, showing that this enzyme--like the eukaryotic protein synthetic machinery--does not readily distinguish the bacterial tRNAfMet from eukaryotic elongator tRNA.  相似文献   

14.
The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the “accessibility” of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.  相似文献   

15.
Summary FITC-Con A fluorescence was used to visualize rER arrangement of endothelial cells derived fromXenopus laevis tadpole hearts. In particular determinants of rER organization, intracellular localization and the interrelationships with other organelles were analysed. rER occurs in association with nucleus, mitochondria and microtubules.The structure of rER is strongly affected by energy metabolism and by microtubules. In order to elucidate the interdependence of structure and function we examined the influence of cellular respiration, net lactate production and protein synthesis on rER morphology, as well as the relationship between energy metabolism and protein synthesis. ER morphology is determined primarily by energy consuming intracellular transport mechanisms. Energy needed for protein synthesis is supplied by the respiratory chain while ATP from aerobic glycolysis only compensates when respiration is disturbed.Abbreviations ACM amphibian culture medium - ATP adenosine triphosphate - FITC-Con A fluoresceine-isothiocyanate-coupled con-canavalin A - MT microtubule - rER rough endoplasmic reticulum - sER smooth endoplasmic reticulum - TRITC-phalloidin tetramethyl-rhodaminyl-isothiocyanate-coupled phalloidin - pXTH primary cells fromXenopus laevis tadpole hearts - XTH-2 endothelial cell line derived fromXenopus laevis tadpole hearts  相似文献   

16.
17.
The specificity of the cell-free system of Escherichia coli for mRNA was examined, and the "accessibility" of some natural and synthetic RNAs to the ribosomes was determined by measurement of AcPhe-tRNA and fMet-tRNA binding, AcPhe-puromycin and fMet-puromycin formation, and polypeptide synthesis. The E. coli system effectively initiates the translation of various synthetic RNAs with AcPhe-tRNA or fMet-tRNA under conditions optimal for the translation of viral RNA. Poly(A,G,U) is accessible to the ribosomes according to all of the above criteria. Poly(A,C,G,U), 23 S rRNA, R17 RNA, and MS2 RNA, on the other hand, show limited accessibility when tested for initiator tRNA binding, or for AcPhe-puromycin and fMet-puromycin formation. MS2 and R17 RNA, but not poly(A,C,G,U) and 23 S rRNA, show accessibility when measured by polypeptide synthesis. The results suggest that, except at initiator sites of natural mRNA, an RNA containing about equal amounts of all four bases is inaccessible to E. coli ribosomes for polypeptide synthesis. Rate constants obtained for fMet-tRNA binding with MS2 RNA, poly(A,G,U), and poly(C,G,U) indicate that the ribosomes do not have any special affinity for the viral RNA. Thus, the selection of the initiator site in protein synthesis may be critically determined more by the accessibility of the initiator codon than by ribosomal recognition of the site.  相似文献   

18.
The combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin produces a dramatic increase in the incorporation of [2-3H]mannose into Glc3Man9GlcNAc2-P-P-dolichol and glycoprotein, and the induction of RNA and DNA synthesis in murine splenic B lymphocytes (B cells). The kinetics of the induction processes and the concentrations of PMA and ionomycin required for the optimal response have been defined. While the levels of induction of RNA and DNA synthesis by PMA + ionomycin were similar to the mitogenic response to bacterial lipopolysaccharide, activation by PMA and the calcium ionophore resulted in a threefold higher stimulation in dolichol-linked oligosaccharide biosynthesis and protein N-glycosylation. These results indicate that all signalling mechanisms that trigger RNA and DNA synthesis may not be sufficient to produce maximal induction of the N-glycosylation apparatus. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), a potent protein kinase C inhibitor, prevented the induction of protein N-glycosylation activity (IC50 = 11 microM), as well as RNA (IC50 = 18 microM) and DNA synthesis (IC50 = 12 microM), two common indices of B cell activation. N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) also inhibited the induction of oligosaccharide-lipid intermediate, glycoprotein, RNA, and DNA synthesis, but required higher concentrations than H-7 for 50% inhibition. N-(2-Guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a potent inhibitor of cyclic nucleotide-dependent protein kinases, had little effect on the activation of the B cell metabolic processes. The H-7-sensitive reactions involved in the induction of RNA and DNA synthesis occurred within 4 h, but induction of lipid intermediate and glycoprotein biosynthesis remained sensitive to H-7 for 10 h after exposure to PMA and ionomycin. Direct in vitro assays in the presence of 0.6% Brij 58 reveal that a cytosolic, phospholipid-dependent protein kinase activity is translocated to a membrane site(s) after treatment with PMA and ionomycin, and the translocated protein kinase is sensitive to H-7. The relative order of potency of the protein kinase inhibitors on the metabolic processes strongly supports the hypothesis that protein kinase C, acting synergistically with Ca2+ mobilization, plays a key regulatory role in the early stages of B cell activation. The synthesis of oligosaccharide-lipid intermediates and protein N-glycosylation are also shown to be induced in B cells activated by PMA + ionomycin.  相似文献   

19.
In this paper, we compare the mechanisms of protein synthesis and natural selection. We identify three core elements of mechanistic explanation: functional individuation, hierarchical nestedness or decomposition, and organization. These are now well understood elements of mechanistic explanation in fields such as protein synthesis, and widely accepted in the mechanisms literature. But Skipper and Millstein have argued (2005) that natural selection is neither decomposable nor organized. This would mean that much of the current mechanisms literature does not apply to the mechanism of natural selection. We take each element of mechanistic explanation in turn. Having appreciated the importance of functional individuation, we show how decomposition and organization should be better understood in these terms. We thereby show that mechanistic explanation by protein synthesis and natural selection are more closely analogous than they appear--both possess all three of these core elements of a mechanism widely recognized in the mechanisms literature.  相似文献   

20.
Follicular oocytes developed in a balanced salt medium containing universally labeled 14C-glutamine and bovine serum albumin, but no carbohydrates or other organic compounds. From the 14CO2 produced and 14C-TCA precipitable material isolated it is suggested that glutamine probably is utilized by oocytes and cumulus cells as a source of energy as well as for protein synthesis. The oocytes produced only about 32% as much 14CO2 as did the associated cumulus cells, but produced 27% more protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号