首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mammalian temperature-sensitive mutant tsAF8 shows cell cycle arrest at nonpermissive temperatures in mid-G1 phase. DNA sequence comparison of the largest subunit of RNA polymerase II (Rpb1) from the wild-type and the mutant shows that the mutant phenotype results from a (hemizygous) C-to-A variation at nucleotide 944 in one rpb1 allele, giving rise to an Ala-to-Asp substitution at residue 315 in the protein. This amino acid substitution was introduced into the Schizosaccharomyces pombe rpb1 gene. Whereas tsAF8 cells showed growth defects and altered Rpb1 distribution at nonpermissive temperatures, yeast cells harboring this amino acid substitution did not show apparent temperature sensitivity. The effect of another temperature-sensitive Rpb1 mutation was also small. These results suggest that mutation of the rpb1 gene, which is critical in mammalian cells, may not be deleterious in yeast cells.  相似文献   

2.
Summary tsAF8 cells area temperature-sensitive (ts) mutant of BHK cells that arrest in the G1 phase of the cell cycle at the non-permissive temperature of 40.6 °C. Previous reports had suggesed that the temperature-sensitivity of these cells was based on a defect in either the synthesis, assembly or turnover of RNA polymerase II. We now show that the direct microinjection of purified RNA polymerase 11 into nuclei of tsAF8 cells corrects the ts defect and allows these cells to enter the S phase of the cell cycle.  相似文献   

3.
Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II.  相似文献   

4.
tsAF8 cells are a temperature-sensitive mutant of BHK cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. The activity of solubilized RNA polymerase II and its ability to bind [3H]-γ-amanitin decrease in tsAF8 cells at 40.6°, with a half-life of ~ 10 hr. No appreciable changes occur in these two parameters in tsAF8 cells at 34° or in BHK cells at either 34° or 40.6°. Protein synthesis is not appreciably affected for at least 24 hr after tsAF8 cells are shifted to 40.6°. These results indicate that in tsAF8 cells at the nonpermissive temperature, there is a defect in either the synthesis, the assembly, or the stability of RNA polymerase II, and that the loss of RNA polymerase II molecules is not due to widespread cellular damage.  相似文献   

5.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

6.
7.
TsAF8 is a temperature-sensitive (TS) mutant of BHK21 cells that arrests at nonpermissive temperatures in the mid-G1 phase of the cell cycle. TsAmaR-1 is a TS for growth mutant of CHO cells with a Ts- and α-amanitin-resistant (AmaR) RNA polymerase II activity. Hybrid TsAmaR-1 x TsAF8 cell lines were constructed at permissive temperatures. Such hybrid cells did not grow at nonpermissive temperatures; the two TS mutations did not complement. Two different AmaR derivatives of TsAF8 were isolated. Each contained only AmaR polymerase II activity, indicating that this RNA polymerase II gene locus in TsAF8 is functionally hemizygous, as would be expected for a locus in which the recessive TsAF8 mutation had occurred. One of these AmaR isolates of TsAF8 had a partially reverted TS+ phenotype. Taken together these results suggest that the TS mutation in TsAF8 is in RNA polymerase II.  相似文献   

8.
9.
A mammalian temperature-sensitive mutant tsAF8 shows cell cycle arrest at nonpermissive temperatures in mid-G1 phase. DNA sequence comparison of the largest subunit of RNA polymerase II (Rpb1) from the wild-type and the mutant shows that the mutant phenotype results from a (hemizygous) C-to-A variation at nucleotide 944 in one rpb1 allele, giving rise to an Ala-to-Asp substitution at residue 315 in the protein. This amino acid substitution was introduced into the Schizosaccharomyces pombe rpb1 gene. Whereas tsAF8 cells showed growth defects and altered Rpb1 distribution at nonpermissive temperatures, yeast cells harboring this amino acid substitution did not show apparent temperature sensitivity. The effect of another temperature-sensitive Rpb1 mutation was also small. These results suggest that mutation of the rpb1 gene, which is critical in mammalian cells, may not be deleterious in yeast cells. RID= ID= <E5>Correspondence to: </E5>K. Sugaya; <E5>email:</E5> k_sugaya&commat;nirs.go.jp Received: 2 September 2002 / Accepted: 7 October 2002  相似文献   

10.
11.
12.
The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed.  相似文献   

13.
14.
The phenotypic defects of three temperature-sensitive (ts) mutants of vaccinia virus, the ts mutations of which were mapped to the gene for one of the high-molecular-weight subunits of the virion-associated DNA-dependent RNA polymerase, were characterized. Because the virion RNA polymerase is required for the initiation of the viral replication cycle, it has been predicted that this type of mutant is defective in viral DNA replication and the synthesis of early viral proteins at the nonpermissive temperature. However, all three mutants synthesized both DNA and early proteins, and two of the three synthesized late proteins as well. RNA synthesis in vitro by permeabilized mutant virions was not more ts than that by the wild type. Furthermore, only one of three RNA polymerase activities that was partially purified from virions assembled at the permissive temperature displayed altered biochemical properties in vitro that could be correlated with its ts mutation: the ts13 activity had reduced specific activity, increased temperature sensitivity, and increased thermolability under a variety of preincubation conditions. Although the partially purified polymerase activity of a second mutant, ts72, was also more thermolabile than the wild-type activity, the thermolability was shown to be the result of a second mutation within the RNA polymerase gene. These results suggest that the defects in these mutants affect the assembly of newly synthesized polymerase subunits into active enzyme or the incorporation of RNA polymerase into maturing virions; once synthesized at the permissive temperature, the mutant polymerases are able to function in the initiation of subsequent rounds of infection at the nonpermissive temperature.  相似文献   

15.
A number of cell-cycle-specific temperature-sensitive (ts) mutants have been isolated from animal cells, especially Syrian hamster cells. These ts mutants, like cell cycle ts mutants of yeast, can be complemented by specific genes, some of which have been molecularly cloned. We have isolated a cDNA clone that complements TK-ts13 cells, but only temporarily. This clone, called B1, differs from a previously isolated clone (Sekiguchi et al.: EMBO Journal 7:1683-1687, 1988) that specifically complements ts13 cells. In addition, B1 also complemented temporarily three other ts mutants of the cell cycle, tsAF8, ts694, and ts550C cells. These mutants have different mutations since, in cell fusion experiments, they complement each other. Sequencing of the B1 cDNA clone revealed that it was a mutant of human ADP/ATP translocase in which some human sequences at the 5' end have been replaced by SV40 sequences. The wild-type translocase was less effective but could still increase the survival time of cell cycle ts mutants at the restrictive temperature. Using the polymerase chain reaction, it was possible to demonstrate that the B1 plasmid is expressed in TK-ts13 cells undergoing temporary complementation.  相似文献   

16.
Suppressors of a temperature-sensitive RNA polymerase II mutation were isolated to identify proteins that interact with RNA polymerase II in yeast cells. Ten independently isolated extragenic mutations that suppressed the temperature-sensitive mutation rpb1-1 and produced a cold-sensitive phenotype were all found to be alleles of a single gene, SRB1. An SRB1 partial deletion mutant was further investigated and found to exhibit several pleiotropic phenotypes. These included suppression of numerous temperature-sensitive RNA polymerase II mutations, alteration of the temperature growth range of cells containing wild-type RNA polymerase, and sterility of cells of alpha mating type. The ability of SRB1 mutations to suppress the temperature-sensitive phenotype of RNA polymerase II mutants did not extend to other temperature-sensitive mutants investigated. Isolation of the SRB1 gene revealed that SRB1 is KEX2. These results indicate that the KEX2 protease, whose only known substrates are hormone precursors, can have an important influence on RNA polymerase II and the temperature-dependent growth properties of yeast cells.  相似文献   

17.
18.
Thymidine kinase and dihydrofolate reductase mRNA levels and enzyme activities were determined in two temperature-sensitive cell lines, tsAF8 and ts13, that growth arrest in the G1 phase of the cell cycle at the restrictive temperature. The levels of thymidine kinase mRNA and enzyme activity increased markedly in both cell lines serum stimulated from quiescence at the permissive temperature. At the nonpermissive temperature, the levels of thymidine kinase mRNA and enzyme activity remain at the low levels of quiescent G0 cells. The levels of dihydrofolate reductase mRNA as well as the enzyme activity also increase when both cell lines are serum stimulated at the permissive temperature. When ts13 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity declines rapidly and dihydrofolate reductase mRNA is below detectable levels. On the contrary, when tsAF8 cells are serum stimulated at the nonpermissive temperature dihydrofolate reductase enzyme activity increases and mRNA levels are detectable slightly above G0 levels, even though the cells are blocked in the G1 phase. Studies with 2 other cDNA clones (one with an insert whose expression is cell cycle dependent and the other with an insert whose expression is not cell cycle dependent) indicate that the results are not due to aspecific toxicity or the effect of temperature. We conclude that the expression of different genes is affected differently by the ts block in G1, even when these genes are all growth-related.  相似文献   

19.
20.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号