首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of apoptosis by alternative pre-mRNA splicing   总被引:2,自引:0,他引:2  
Apoptosis, a phenomenon that allows the regulated destruction and disposal of damaged or unwanted cells, is common to many cellular processes in multicellular organisms. In humans more than 200 proteins are involved in apoptosis, many of which are dysregulated or defective in human diseases including cancer. A large number of apoptotic factors are regulated via alternative splicing, a process that allows for the production of discrete protein isoforms with often distinct functions from a common mRNA precursor. The abundance of apoptosis genes that are alternatively spliced and the often antagonistic roles of the generated protein isoforms strongly imply that alternative splicing is a crucial mechanism for regulating life and death decisions. Importantly, modulation of isoform production of cell death proteins via pharmaceutical manipulation of alternative splicing may open up new therapeutic avenues for the treatment of disease.  相似文献   

2.
3.
Regulation of alternative splicing by reversible protein phosphorylation   总被引:3,自引:0,他引:3  
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.  相似文献   

4.
5.
Alternative mRNA splicing is becoming increasingly recognized as an important mechanism for the generation of structural and functional diversity in proteins. Recent estimations predict that approximately 50% of all eukaryotic proteins can be alternatively spliced. Several lines of evidence suggest that alternative mRNA splicing results in small changes in protein structure and is likely to fine-tune the function and specificity of the affected protein. However, knowledge of how alternative splicing regulates cellular processes on the molecular level is still limited. It is only recently that structures of alternatively spliced proteins have been solved. These studies have shown that alternative splicing affects the structure not only in the vicinity of the splice site but also at long distance.  相似文献   

6.
RNase III enzyme Drosha interacts with DGCR8 to form the Microprocessor, initiating canonical microRNA (miRNA) maturation in the nucleus. Here, we re-evaluated where Drosha functions in cells using Drosha and/or DGCR8 knock out (KO) cells and cleavage reporters. Interestingly, a truncated Drosha mutant located exclusively in the cytoplasm cleaved pri-miRNA effectively in a DGCR8-dependent manner. In addition, we demonstrated that in vitro generated pri-miRNAs when transfected into cells could be processed to mature miRNAs in the cytoplasm. These results indicate the existence of cytoplasmic Drosha (c-Drosha) activity. Although a subset of endogenous pri-miRNAs become enriched in the cytoplasm of Drosha KO cells, it remains unclear whether pri-miRNA processing is the main function of c-Drosha. We identified two novel in-frame Drosha isoforms generated by alternative splicing in both HEK293T and HeLa cells. One isoform loses the putative nuclear localization signal, generating c-Drosha. Further analysis indicated that the c-Drosha isoform is abundant in multiple cell lines, dramatically variable among different human tissues and upregulated in multiple tumors, suggesting that c-Drosha plays a unique role in gene regulation. Our results reveal a new layer of regulation on the miRNA pathway and provide novel insights into the ever-evolving functions of Drosha.  相似文献   

7.
One of the control mechanisms of cathepsin B biosynthesis and trafficking operates through alternative splicing of pre-mRNA. An mRNA lacking exon 2 is more efficiently translated than that containing all exons, and may be responsible for elevated biosynthesis and enzyme routing to the extracellular space, with critical consequences for connective tissue integrity in pathologies such as cancer and arthritis. mRNA missing exons 2 and 3 encodes a truncated procathepsin B form that is targeted to mitochondria. This enzyme variant is catalytically inactive because it cannot properly fold. However, it provokes a cascade of events, which result first in morphological changes in intracellular organelles and the nucleus, finally leading to cell death.  相似文献   

8.
Alternative splicing of introns is essential to ensure the complexity of mammalian genome functions. In particular, the generation of a high number of different isoforms by alternative splicing is an important characteristic of genes coding for signalling proteins such as mitogen activated protein kinases (MAPKs). This is thought to allow these proteins to transduce multiple stimuli in a highly regulated manner. Plant genes are also subjected to alternative splicing. Nevertheless, clear examples of the functional consequences of this phenomenon are still scarce in plants. MIK is a maize gene coding for a GCK-like MAP4K that can be activated by interaction with maize atypical receptor kinase (MARK), an atypical receptor kinase. Here we show that MIK is subjected to alternative splicing. Expression of MIK leads to, at least, 4 different mature mRNAs that accumulate with particular expression profiles during maize development. Our results show that the polypeptides encoded by the different MIK mRNAs display different kinase activity and are differentially activated by interaction with the MARK receptor. Two MIK isoforms display constitutive kinase activity, one isoform is inactive but can be activated by MARK, and the fourth MIK isoform is inactive and cannot be activated by MARK. Our results constitute a clear example of the biochemical consequences of alternative splicing in plants. The selective conservation during evolution of the intron–exon structure of the region coding for the regulator domain of MIK, as well as the maintenance in maize, rice and Arabidopsis of the alternative splicing of some of these introns, are strong indications of its functional importance.  相似文献   

9.
Novel human PDGFA gene transcripts derived by alternative mRNA splicing   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
Differential gene expression through alternative pre-mRNA splicing is crucial to various physiological and pathological conditions. Upon activation of B and T lymphocytes during an immune response, variant isoforms of the cell surface molecule CD44 are generated by alternative pre-mRNA splicing. We show here that in primary mouse T cells as well as in the murine LB-17 T-cell line upregulation of variant CD44 mRNA species upon T-cell activation requires activation of the MEK-ERK pathway. By employing mutant signaling molecules and a novel luciferase-based splice reporter system we demonstrate that the Ras-Raf-MEK-ERK signaling cascade, but not the p38 MAP-kinase pathway, activates a mechanism that retains variant CD44 exon v5 sequence in mature mRNA. The findings demonstrate that a highly conserved pleiotropic signaling pathway links extracellular cues to splice regulation, providing an avenue for tissue-specific, developmental or pathology-associated splicing decisions.  相似文献   

12.
13.
SRrp86 is a unique member of the SR protein superfamily containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK)-rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins and that the unique EK domain could inhibit both constitutive and alternative splicing. These functions were most consistent with the model in which SRrp86 functions by interacting with and thereby modulating the activity of target proteins. To identify the specific proteins that interact with SRrp86, we used a yeast two-hybrid library screen and immunoprecipitation coupled to mass spectrometry. We show that SRrp86 interacts with all of the core SR proteins, as well as a subset of other splicing regulatory proteins, including SAF-B, hnRNP G, YB-1, and p72. In contrast to previous results that showed activation of SRp20 by SRrp86, we now show that SAF-B, hnRNP G, and 9G8 all antagonize the activity of SRrp86. Overall, we conclude that not only does SRrp86 regulate SR protein activity but that it is, in turn, regulated by other splicing factors to control alternative splice site selection.  相似文献   

14.
Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2.   总被引:119,自引:0,他引:119  
A Mayeda  A R Krainer 《Cell》1992,68(2):365-375
When messenger RNA precursors (pre-mRNAs) containing alternative 5' splice sites are spliced in vitro, the relative concentrations of the heterogeneous ribonucleoprotein (hnRNP) A1 and the essential splicing factor SF2 precisely determine which 5' splice site is selected. In general, an excess of hnRNP A1 favors distal 5' splice sites, whereas an excess of SF2 results in utilization of proximal 5' splice sites. The regulation of these antagonistic activities may play an important role in the tissue-specific and developmental control of gene expression by alternative splicing.  相似文献   

15.
Hepatocytes are the source of plasma fibronectin (FN) which lacks the alternatively spliced EDI segment, distinctive of oncofetal FN. When hepatic or other epithelial cells are cultured on plastic, EDI inclusion is triggered. Here we report that EDI inclusion is inhibited when hepatic cells are cultured on a basement membrane-like extracellular matrix (ECM), demonstrating a new role for the ECM in the control of gene expression. The effect is duplicated by collagen IV and laminin but not by collagen I; is not observed with another alternatively spliced FN exon (EDII); and correlates with a decrease in cell proliferation, consistently with high EDI inclusion levels observed in many physiological and pathological proliferative processes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号