首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acoustic frequency (pitch) cues are known to be important in the recognition of conspecific song in a number of songbird species. Mountain chickadees (Poecile gambeli) and black-capped chickadees (Poecile atricapillus) are sympatric over parts of their ranges and their species-typical songs share many features. I examined the acoustic characteristics of song of these two congeners in a region of sympatry in southern Alberta, Canada. As reported for other populations in allopatry, black-capped chickadees emphasized relative frequency cues in song production. In particular, variation in the ratios between note frequencies was significantly less than variation in the note frequencies themselves. In contrast, songs of mountain chickadees did not have constant frequency ratios and contained an introductory acoustic element absent in black-capped chickadee song. Both species may rely on song note frequency or the presence of this introductory acoustic element when differentiating between conspecific song and heterospecific song. Song measures for chickadees in sympatry were similar to measures in allopatry, providing little evidence for character displacement in song production.  相似文献   

2.
Divergence of male sexual signals and female preferences for those signals often maintains reproductive boundaries between closely related, co‐occurring species. However, contrasting sources of selection, such as interspecific competition, can lead to weak divergence or even convergence of sexual signals in sympatry. When signals converge, assortative mating can be maintained if the mating preferences of females diverge in sympatry (reproductive character displacement; RCD), but there are few explicit examples. Pied flycatchers (Ficedula hypoleuca) are sympatric with collared flycatchers (F. albicollis) on the Baltic island of Öland, where males from both species compete over nestboxes, their songs converge, and the two species occasionally hybridize. We compare song discrimination of male and female pied flycatchers on Öland and in an allopatric population on the Swedish mainland. Using field choice trials, we show that male pied flycatchers respond similarly to the songs of both species in sympatry and allopatry, while female pied flycatchers express stronger discrimination against heterospecific songs in sympatry than in allopatry. These results are consistent with RCD of song discrimination of female pied flycatchers where they co‐occur with collared flycatchers, which should maintain species assortative mating despite convergence of male sexual signals.  相似文献   

3.
Playback experiments with Acrocephalus warblers in areas of sympatry and allopatry reveal that significant interspecific responses only occurred under certain conditions of competition in sympatry. These were when a later arriving species overlapped and invaded the habitat already occupied by the earlier arriving species. The latter were dominant in interspecific interactions. Earlier models which suggested that interspecific territorialism results largely through failure to discriminate between two species are critically discussed, and found inadequate to explain the present and similar cases. It is suggested that learning may also play a role, and that certain individuals may learn to recognize and respond to the songs of congenerics who are regularly heard and encountered in competitive situations.  相似文献   

4.
Chunco AJ  Jobe T  Pfennig KS 《PloS one》2012,7(3):e32748
Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats.  相似文献   

5.
We investigated whether present distribution ranges in marine organisms are reliable indicators of the geographic pattern of past speciation events by assessing the level of geographic overlap (sympatric index) as a function of node age in four phylogenies of tropical marine species groups. The analyses led to remarkably similar results among the four groups examined with (1) most nodes associated with a sympatry index of either 0 (allopatry) or 1 (entire overlap) and (2) statistical support that sister species have an allopatric distribution significantly more frequently than sister clades (i.e. groups of species). Species divergences were expressed on a time scale and very similar times were needed for species range overlap to occur since sharp transitions from allopatry to sympatry occurred around 4 Ma in all groups. Present results supports that species range changes were not random as previous simulations results supports that species range probably evolve through occasional shifts of large amplitude. In front of the time needed for species range overlapping, our study suggests that species interaction and competitive exclusion can no longer be excluded as a driver of marine species distribution.  相似文献   

6.
Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx (Lynx canadensis) or bobcat (Lynx rufus) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species’ ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.  相似文献   

7.
Sexual incompatibility due to differences in mate-recognition systems can be an important factor in preventing hybridization and gene flow between animal populations in sympatry. We tested in the laboratory for sexual incompatibility between populations of two species of desmognathine salamanders that occur in sympatry in south-eastern Kentucky, North America, Desmognathus monticola and D. welteri (Caudata: Plethodontidae: Desmognathinae). Spermatophore deposition and insemination (two related measures of sexual success) were frequent in intraspecific encounters, but interspecific encounters never resulted in the deposition of spermatophores by males (Experiment 1). The sexual behaviour patterns of these two species are similar qualitatively, but all encounters staged between them failed to progress beyond the most preliminary of courtship interactions (Experiment 2), perhaps due to species differences in chemosensory communication. Our data on sexual incompatibility between D. monticola and D. welteri are similar to those available for other desmognathine taxa that occur in sympatry. Review of a broader data-set on patterns of sexual incompatibility both within and between species, and in allopatry and in sympatry, provides evidence for both divergence of mate-recognition systems in allopatry and enhancement of sexual incompatibility in sympatry for desmognathine salamanders. We hypothesize that diversification in allopatry may be a consequence of natural and/or sexual selection acting to promote sexual success within populations. Enhancement in sympatry may be a consequence of subsequent selection for accurate species recognition under the threat of hybridization or gene flow between species.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 367–375.  相似文献   

8.
In the eastern United States the wood cricket Gryllus fultoni (Orthoptera: Gryllidae) occurs in sympatry with G. vernalis in an area between eastern Kansas and west of the Appalachian Mountains. Calling songs were recorded from 13 sympatric and allopatric localities. Both field and laboratory recordings showed that chirp rate (CR) and pulse rate (PR) overlapped extensively between allopatric populations of G. fultoni and sympatric populations of G. vernalis; by contrast, there was little or no overlap in these variables between sympatric populations of these two species. Divergence in PR and CR between the two species was thus greater in areas of sympatry than in areas of allopatry. Our field and laboratory studies of G. fultoni calling songs thus demonstrate the pattern expected of character displacement and support the genetic assumptions of this hypothesis. Other possible explanations for the sympatric divergence such as ecological character displacement and clinal variation are discussed.  相似文献   

9.
Prolonged periods of allopatry might result in loss of the ability to discriminate against other formerly sympatric species, and can lead to heterospecific matings and hybridization upon secondary contact. Loss of premating isolation during prolonged allopatry can operate in the opposite direction of reinforcement, but has until now been little explored. We investigated how premating isolation between two closely related damselfly species, Calopteryx splendens and C. virgo , might be affected by the expected future northward range expansion of C. splendens into the allopatric zone of C. virgo in northern Scandinavia. We simulated the expected secondary contact by presenting C. splendens females to C. virgo males in the northern allopatric populations in Finland. Premating isolation toward C. splendens in northern allopatric populations was compared to sympatric populations in southern Finland and southern Sweden. Male courtship responses of C. virgo toward conspecific females showed limited geographic variation, however, courtship attempts toward heterospecific C. splendens females increased significantly from sympatry to allopatry. Our results suggest that allopatric C. virgo males have partly lost their ability to discriminate against heterospecific females. Reduced premating isolation in allopatry might lead to increased heterospecific matings between taxa that are currently expanding and shifting their ranges in response to climate change.  相似文献   

10.
Radiotelemetry was used to assess the distribution and diving behaviour of Rock Shags Phalacrocorax magellanicus and Red-legged Cormorants Phalacrocorax gaimardi breeding in sympatry, and Rock Shags breeding in isolation. When breeding in sympatry there was little overlap in the foraging locations of the two species, with the highest densities of each species separated by 10 km. Red-legged Cormorants fed significantly closer to the breeding colony than did Rock Shags and undertook shorter foraging trips, making almost twice as many foraging trips per day as Rock Shags. Rock Shags breeding in isolation had a shorter foraging range than the birds breeding in sympatry with Red-legged Cormorants and foraging trip duration was significantly shorter. However, the number of feeding trips per day was similar between areas of sympatry and allopatry. Differences in the foraging ecology of Rock Shags in areas of sympatry and allopatry may be due to interspecific competition, which forces niche differentiation. The distance between foraging sites, the speed of movement of the prey, a species tendency to move into prey-depleted areas and the length of the breeding season (during which the birds are constrained to be in the same area) may play critical roles in determining the extent to which differential area use by competitors is a strategy that benefits both parties.  相似文献   

11.
Both abiotic and biotic drivers influence species distributions. Abiotic drivers such as climate have received considerable attention, even though biotic drivers such as hybridization often interact with abiotic drivers. We sought to explore the (1) costs of co‐occurrence for ecologically similar species that hybridize and (2) associations between ecological factors and condition to understand how abiotic and biotic factors influence species distributions. For two closely related and ecologically similar songbirds, black‐capped and mountain chickadees, we characterized body condition, as a proxy for fitness, using a 1358‐individual range‐wide dataset. We compared body condition in sympatry and allopatry with several abiotic and biotic factors using species‐specific generalized linear mixed models. We generated genomic data for a subset of 217 individuals to determine the extent of hybridization‐driven admixture in our dataset. Within this data subset, we found that ~11% of the chickadees had hybrid ancestry, and all hybrid individuals had typical black‐capped chickadee plumage. In the full dataset, we found that birds of both species, independent of demographic and abiotic factors, had significantly lower body condition when occurring in sympatry than birds in allopatry. This could be driven by either the inclusion of cryptic, likely poor condition, hybrids in our full dataset, competitive interactions in sympatry, or range edge effects. We are currently unable to discriminate between these mechanisms. Our findings have implications for mountain chickadees in particular, which will encounter more black‐capped chickadees as black‐capped chickadee ranges shift upslope and could lead to local declines in mountain chickadee populations.  相似文献   

12.
A new approach for biogeography to find patterns of sympatry, based on network analysis, is proposed. Biogeographic analysis focuses basically on sympatry patterns of species. Sympatry is a network (= relational) datum, but it has never been analyzed before using relational tools such as Network Analysis. Our approach to biogeographic analysis consists of two parts: first the sympatry inference and second the network analysis method (NAM). The sympatry inference method was designed to propose sympatry hypothesis, constructing a basal sympatry network based on punctual data, independent of a priori distributional area determination. In this way, two or more species are considered sympatric when there is interpenetration and relative proximity among their records of occurrence. In nature, groups of species presenting within-group sympatry and between-group allopatry constitute natural units (units of co-occurrence). These allopatric units are usually connected by intermediary species. The network analysis method (NAM) that we propose here is based on the identification and removal of intermediary species to segregate units of co-occurrence, using the betweenness measure and the clustering coefficient. The species ranges of the units of co-occurrence obtained are transferred to a map, being considered as candidates to areas of endemism. The new approach was implemented on three different real complex data sets (one of them a classic example previously used in biogeography) resulting in (1) independence of predefined spatial units; (2) definition of co-occurrence patterns from the sympatry network structure, not from species range similarities; (3) higher stability in results despite scale changes; (4) identification of candidates to areas of endemism supported by strictly endemic species; (5) identification of intermediary species with particular biological attributes.  相似文献   

13.
Variation recorded within species is often taken to represent evidence for local and ongoing adaptation, but often without the interpopulation variation being subject to analysis across the geographic distribution occupied by the taxon. Here we investigate the rhythmic song structure across the range of three known song types in a variable cicada, Pauropsalta annulata Goding and Froggatt. Statistical analysis of the structure of songs across individuals reveals four discrete clusters that are demonstrated to be independent and stable across extensive geographic space in areas of allopatry and, generally, also into areas of sympatry. This suggests that P. annulata is a cryptic species complex. Unique combinations of plant species are linked with each of the clusters, suggesting that the different populations have independent plant associations. These findings are discussed in relation to similar case studies on cicadas and other organisms, with particular emphasis on the most appropriate approach to testing variation across populations, especially when it is thought to represent populations in the initial stages of evolutionary divergence.  相似文献   

14.
Ascertaining which niche processes allow coexistence between closely related species is of special interest in ecology. We quantified variations in the environmental niches and densities of two congeneric species, the pin-tailed and the black-bellied sandgrouse (Pterocles alchata and Pterocles orientalis) in allopatry and sympatry under similar abiotic, habitat and dispersal contexts to understand their coexistence. Using principal component analysis, we defined environmental gradients (niche dimensions) including abiotic, habitat and anthropogenic variables, and calculated niche breadth, position and overlap of both species in sympatry and allopatry. Additionally, sandgrouse density was modelled as a function of the niche dimensions and the density of the other species. We found evidence that each species occupies distinct environmental niches in sympatry and in allopatry. The black-bellied sandgrouse exploits a broader range of environmental conditions (wider niche breadth) while the pin-tailed sandgrouse reaches high densities where conditions seem to match its optimum. In sympatry, both species shift their niches to intermediate positions, indicating the importance of abiotic factors in setting coexistence areas. Environmental conditions determine regional densities of pin-tailed sandgrouse whereas biotic interactions explain the density of the black-bellied sandgrouse in areas with abiotic conditions similarly conducive for both species. Highly suitable areas for the pin-tailed sandgrouse fall beyond the upper thermal limit of the black-bellied sandgrouse, leading to niche segregation and low densities for the latter. Finally, local niche shift and expansion plus possible heterospecific aggregation allow the pin-tailed sandgrouse to thrive in a priori less favourable environments. This work provides insight into how different mechanisms allow species coexistence and how species densities vary in sympatry compared to allopatry as a result of environmental filtering and biotic interactions.  相似文献   

15.
Proximate sources of marine biodiversity   总被引:1,自引:1,他引:0  
When temperature and other kinds of barrier divide formerly continuous populations and confine them to more restricted geographical areas, there is an evolutionary reaction that will, over time, result in the formation of endemic species. In such cases, an allopatric speciation process is considered to have taken place because reproductive isolation was caused by physical means instead of by natural selection. In contrast, when populations exist in a very high-diversity area and remain undivided by physical events, they exhibit a tendency to speciate by means of sympatry (or parapatry). This process, sometimes called competitive or ecological speciation, does involve reproductive isolation by means of natural selection. Populations that exist in geographical provinces bounded by physical barriers add to the overall diversity through the production of endemic species. This increase by species packing is relatively slow due to the very gradual tempo of the allopatric speciation process. Populations existing in centres of origin add to the general diversity through the production of species that are dominant in terms of their ability to spread over large parts of the world. It is proposed that such species are usually formed by sympatric speciation, a process that can be c. 20 times faster than species formation by allopatry. It is not suggested that sympatry is exclusive to centres of origin, nor that allopatry is confined to peripheral provinces. Both processes are widespread, but there do appear to be distinctive geographical concentrations. Considering that numbers of widespread species produced by centres of origin may eventually become subdivided by barriers, and thus give rise to descendants by allopatry, it is difficult to say how much of our present species diversity has come from one source or the other. Both speciation by sympatry from centres of origin and speciation by allopatry in peripheral provinces appear to be important sources of marine biodiversity.  相似文献   

16.
Sone  Shin  Inoue  Mikio  Yanagisawa  Yasunobu 《Ecological Research》2001,16(2):205-219

The importance of interspecific competition to habitat use by two congeneric stream gobies, Rhinogobius sp. LD (large-dark type) and CB (cross-band type), was studied by: (i) examining differences in habitat use by each species along the course of the stream; and (ii) comparing microhabitat use and the diet of each species between in allopatry and in sympatry in tributaries of the Shimanto River, south-western Shikoku, Japan. Rhinogobius sp. LD mainly used riffles through the course of the stream. Although CB also mainly used riffles in the lower reaches where CB was numerically dominant, the greater use of riffles by CB was not observed in upper reaches where LD was dominant. Microhabitat analysis revealed that both LD and CB preferred lower bottom velocity in faster current in both allopatry and sympatry. In sympatry, however, LD used coarser substrate and faster current than CB, and both LD and CB used narrower ranges of microhabitat conditions than in allopatry. Dietary analysis indicated that both allopatric and sympatric LD preferred baetids, which are apt to drift, suggesting they adopted ambush foraging. Allopatric CB preferred leptophlebiids and chironomids, which are also apt to drift, whereas sympatric CB did not prefer such invertebrates. Overall results of this study suggest that LD and CB compete for better feeding habitats, CB shift their habitat use and foraging mode under the influence of LD, and current velocity and substrate coarseness are key factors in their habitat segregation.

  相似文献   

17.
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in ‘deep sympatry’), rare (i.e. at the sympatry/allopatry boundary or ‘edge sympatry’) and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision – within and among different mimics – offers novel insights into the causes and consequences of mimicry.  相似文献   

18.
Elucidating the relationship between genetic and cultural evolution is important in understanding speciation, as learned premating barriers might be involved in maintaining species differences. Here, we test this relationship by examining a widely recognized premating barrier, bird song, in a hybrid zone between black‐throated green (Setophaga virens) and Townsend's warblers (S. townsendi). We use song analysis, genomic techniques and playback experiments to characterize the cultural and genetic backgrounds of individuals in this region, expecting that if song is an important reproductive barrier between these species, there should be a strong relationship between song and genotype. We show that songs in the hybrid zone correspond to the distinctly different songs found in allopatry but that song and genotype are not tightly coupled in sympatry. Allopatric individuals responded only to local songs, indicating that individuals may have learned to respond to songs they commonly hear. We observed discordance between song and genotype clines; a narrower cline suggests that cultural selection on song is stronger than natural selection on genotype. These findings indicate that song is unlikely to play a role in reproductive isolation between these species, and we suggest that spatial variation in song may nonetheless be maintained by frequency‐dependent cultural selection. This decoupling of genes and culture may contribute to hybridization in this region.  相似文献   

19.
Character displacement, in which coevolution of similar species alters their phenotypes, can be difficult to identify on the basis of observational data alone. In two-species systems, the most commonly identified (i.e., classic) resulting pattern is greater phenotypic difference between species in sympatry than allopatry. We show that restricting studies to this pattern may exclude many instances of character displacement, particularly in the presence of spatial environmental gradients. We present four spatial models of character displacement in quantitative traits affecting competition and hybridization between the species. Our models highlight the connections between range limits and character displacement in continuous space. We conclude that the classic pattern is less likely to occur for a trait affecting resource acquisition than for a trait affecting mate choice. We also show that interspecific hybridization (when hybrids are inviable), even in very small amounts, has marked effects on the shape and stability of borders between species and the nature of character displacement. A survey of the empirical literature shows that character displacement studies often lack analysis of spatial phenotype and abundance data. We recommend more careful spatial sampling in character displacement studies, and we illustrate how comparison of clines in mean phenotype in sympatry and allopatry can be used to suggest the action of character displacement.  相似文献   

20.
Aim  Niche theory predicts that ecologically identical species cannot stably coexist in local communities. My aim was to investigate morphological diversity as a possible factor enabling the coexistence of a species-rich Microtus (Rodentia: Arvicolinae) fauna in a hotspot of North American mammalian diversity, the Greater Yellowstone Ecosystem (GYE).
Location  The Greater Yellowstone Ecosystem, North America.
Methods  Using in-hand morphological measurements of size and shape, I compared the morphologies of three North American vole species ( Microtus spp.), in sympatry in the GYE and in allopatry across their ranges, in order to examine: (1) whether morphologies are fixed or plastic and (2) the degree of morphological character displacement or convergence in sympatric species.
Results  Support was found for plasticity of morphology for all three vole species: M. longicaudus , M. montanus and M. pennsylvanicus. However, Microtus individuals of all species from the GYE area of sympatry were more similar to each other than to allopatric individuals of the same species.
Main conclusions  Competition among these congeners is not manifested in morphological overdispersion. The response of these congeneric species to the same local ecological conditions is convergent. The relative strength of environmental conditions appears to be stronger than the strength of competitive interactions among the study species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号