首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai T  Aulds J  Gill T  Cerio M  Schmitt ME 《Genetics》2002,161(3):1029-1042
We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of "exit from mitosis" mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most "exit from mitosis" mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia.  相似文献   

2.
B Dichtl  A Stevens    D Tollervey 《The EMBO journal》1997,16(23):7184-7195
Hal2p is an enzyme that converts pAp (adenosine 3',5' bisphosphate), a product of sulfate assimilation, into 5' AMP and Pi. Overexpression of Hal2p confers lithium resistance in yeast, and its activity is inhibited by submillimolar amounts of Li+ in vitro. Here we report that pAp accumulation in HAL2 mutants inhibits the 5'-->3' exoribonucleases Xrn1p and Rat1p. Li+ treatment of a wild-type yeast strain also inhibits the exonucleases, as a result of pAp accumulation due to inhibition of Hal2p; 5' processing of the 5.8S rRNA and snoRNAs, degradation of pre-rRNA spacer fragments and mRNA turnover are inhibited. Lithium also inhibits the activity of RNase MRP by a mechanism which is not mediated by pAp. A mutation in the RNase MRP RNA confers Li+ hypersensitivity and is synthetically lethal with mutations in either HAL2 or XRN1. We propose that Li+ toxicity in yeast is due to synthetic lethality evoked between Xrn1p and RNase MRP. Similar mechanisms may contribute to the effects of Li+ on development and in human neurobiology.  相似文献   

3.
4.
5.
6.
Faithful degradation of soybean rbcS mRNA in vitro.   总被引:6,自引:1,他引:5       下载免费PDF全文
The mRNA encoding the soybean rbcS gene, SRS4, is degraded into a set of discrete lower-molecular-weight products in light-grown soybean seedlings and in transgenic petunia leaves. The 5'-proximal products have intact 5' ends, lack poly(A) tails, lack various amounts of 3'-end sequences, and are found at higher concentrations in the polysomal fraction. To study the mechanisms of SRS4 mRNA decay more closely, we developed a cell-free RNA degradation system based on a polysomal fraction isolated from soybean seedlings or mature petunia leaves. In the soybean in vitro degradation system, endogenous SRS4 mRNA and proximal product levels decreased over a 6-h time course. When full-length in vitro-synthesized SRS4 RNAs were added to either in vitro degradation system, the RNAs were degraded into the expected set of proximal products, such as those observed for total endogenous RNA samples. When exogenously added SRS4 RNAs already truncated at their 3' ends were added to either system, they too were degraded into the expected subset of proximal products. A set of distal fragments containing intact 3' ends and lacking various portions of 5'-end sequences were identified in vivo when the heterogeneous 3' ends of the SRS4 RNAs were removed by oligonucleotide-directed RNase H cleavage. Significant amounts of distal fragments which comigrated with the in vivo products were also observed when exogenous SRS4 RNAs were degraded in either in vitro system. These proximal and distal products lacking various portions of their 3' and 5' sequences, respectively, were generated in essentially a random order, a result supporting a nonprocessive mechanism. Tagging of the in vitro-synthesized RNAs on their 5' and 3' ends with plasmid vector sequences or truncation of the 3' end had no apparent effect on the degradation pattern. Therefore, RNA sequences and/or structures in the immediate vicinity of each 3' end point may be important in the degradation machinery. Together, these data suggest that SRS4 mRNA is degraded by a stochastic mechanism and that endonucleolytic cleavage may be the initial event. These plant in vitro systems should be useful in identifying the cis- and trans-acting factors involved in the degradation of mRNAs.  相似文献   

7.
Messenger RNA decay plays a central role in the regulation and surveillance of eukaryotic gene expression. The conserved multidomain exoribonuclease Xrn1 targets cytoplasmic RNA substrates marked by a 5' monophosphate for processive 5'-to-3' degradation by an unknown mechanism. Here, we report the crystal structure of an Xrn1-substrate complex. The single-stranded substrate is held in place by stacking of the 5'-terminal trinucleotide between aromatic side chains while a highly basic pocket specifically recognizes the 5' phosphate. Mutations of residues involved in binding the 5'-terminal nucleotide impair Xrn1 processivity. The substrate recognition mechanism allows Xrn1 to couple processive hydrolysis to duplex melting in RNA substrates with sufficiently long single-stranded 5' overhangs. The Xrn1-substrate complex structure thus rationalizes the exclusive specificity of Xrn1 for 5'-monophosphorylated substrates, ensuring fidelity of mRNA turnover, and posits a model for translocation-coupled unwinding of structured RNA substrates.  相似文献   

8.
9.
10.
As an important mode of suppressing gene expression, messenger RNAs containing an AU-rich element (ARE) in the 3' untranslated region are rapidly degraded in the cytoplasm. ARE-mediated mRNA decay (AMD) is initiated by deadenylation, and in vitro studies have indicated that subsequent degradation occurs in the 3'-5' direction through a complex of exonucleases termed the exosome. An alternative pathway of mRNA degradation occurs at processing bodies, cytoplasmic foci that contain decapping enzymes, the 5'-3' exonuclease Xrn1 and the Lsm1-7 heptamer. To determine which of the two pathways is important for AMD in live cells, we targeted components of both pathways using short interfering RNA in human HT1080 cells. We show that Xrn1 and Lsm1 are essential for AMD. On the other side, out of three exosome components tested, only knockdown of PmScl-75 caused a strong inhibition of AMD. Our results show that mammalian cells, similar to yeast, require the 5'-3' Xrn1 pathway to degrade ARE-mRNAs.  相似文献   

11.
B Schwer  X Mao    S Shuman 《Nucleic acids research》1998,26(9):2050-2057
Current models of mRNA decay in yeast posit that 3' deadenylation precedes enzymatic removal of the 5' cap, which then exposes the naked end to 5' exonuclease action. Here, we analyzed gene expression in Saccharomyces cerevisiae cells bearing conditional mutations of Ceg1 (capping enzyme), a 52 kDa protein that transfers GMP from GTP to the 5' end of mRNA to form the GpppN cap structure. Shift of ceg1 mutants to restrictive temperature elicited a rapid decline in the rate of protein synthesis, which correlated with a sharp reduction in the steady-state levels of multiple individual mRNAs. ceg1 mutations prevented the accumulation of SSA1 and SSA4 mRNAs that were newly synthesized at the restrictive temperature. Uncapped poly(A)+ SSA4 mRNA accumulated in cells lacking the 5' exoribonuclease Xrn1. These findings provide genetic evidence for the long-held idea that the cap guanylate is critical for mRNA stability. The deadenylation-decapping-degradation pathway appears to be short-circuited when Ceg1 is inactivated.  相似文献   

12.
13.
Expression of thrS, the gene encoding Escherichia coli threonyl-tRNA synthetase, is negatively autoregulated at the translational level. Regulation is due to the binding of threonyl-tRNA synthetase to its own mRNA at a site called the operator, located immediately upstream of the initiation codon. The present work investigates the relationship between regulation and mRNA degradation. We show that two regulatory mutations, which increase thrS expression, cause an increase in the steady-state mRNA concentration. Unexpectedly, however, the half-life of thrS mRNA in the derepressed mutants is equal to that of the wild-type, indicating that mRNA stability is independent of the repression level. All our results can be explained if one assumes that thrS mRNA is either fully translated or immediately degraded. The immediately degraded RNAs are never detected due to their extremely short half-lives, while the fully translated messengers share the same half-lives, irrespective of the mutations. The increase in the steady-state level of thrS mRNA in the derepressed mutants is simply explained by an increase in the population of translated molecules, i.e. those never bound by the repressor, ThrRS. Despite this peculiarity, thrS mRNA degradation seems to follow the classical degradation pathway. Its stability is increased in a strain defective for RNase E, indicating that an endonucleolytic cleavage by this enzyme is the rate-limiting process in degradation. We also observe an accumulation of small fragments corresponding to the 5' end of the message in a strain defective for polynucleotide phosphorylase, indicating that, following the endonucleolytic cleavages, fragments are normally degraded by 3' to 5' exonucleolytic trimming. Although mRNA degradation was suspected to increase the efficiency of translational control based on several considerations, our results indicate that inhibition of mRNA degradation has no effect on the level of repression by ThrRS.  相似文献   

14.
The genome of the kinetoplastid parasite Trypanosoma brucei encodes four homologs of the Saccharomyces cerevisiae 5'-->3' exoribonucleases Xrn1p and Xrn2p/Rat1p, XRNA, XRNB, XRNC, and XRND. In S. cerevisiae, Xrn1p is a cytosolic enzyme involved in degradation of mRNA, whereas Xrn2p is involved in RNA processing in the nucleus. Trypanosome XRND was found in the nucleus, XRNB and XRNC were found in the cytoplasm, and XRNA appeared to be in both compartments. XRND and XRNA were essential for parasite growth. Depletion of XRNA increased the abundances of highly unstable developmentally regulated mRNAs, perhaps by delaying a deadenylation-independent decay pathway. Degradation of more stable or unregulated mRNAs was not affected by XRNA depletion although a slight decrease in average poly(A) tail length was observed. We conclude that in trypanosomes 5'-->3' exonuclease activity is important in degradation of highly unstable, regulated mRNAs, but that for other mRNAs another step is more important in determining the decay rate.  相似文献   

15.
16.
17.
18.
mRNA decay is a major determinant of gene expression. In Escherichia coli, message degradation initiates with an endoribonucleolytic cleavage followed by exoribonuclease digestion to generate 5'-mononucleotides. Although the 3' to 5' processive exoribonucleases, PNPase and RNase II, have long been considered to be mediators of this digestion, we show here that another enzyme, RNase R, also participates in the process. RNase R is particularly important for removing mRNA fragments with extensive secondary structure, such as those derived from the many mRNAs that contain REP elements. In the absence of RNase R and PNPase, REP-containing fragments accumulate to high levels. RNase R is unusual among exoribonucleases in that, by itself, it can digest through extensive secondary structure provided that a single-stranded binding region, such as a poly(A) tail, is present. These data demonstrate that RNase R, which is widespread in prokaryotes and eukaryotes, is an important participant in mRNA decay.  相似文献   

19.
20.
The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号