首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gametogenesis in Atractomorpha porcata Hoffman was initiated b the synchronous mitotic division of nuclei within a multinucleate gametangium. Uninucleate gametes were subsequently produced following two series of cytokinetic divisions. The first series involved the formation of phycoplast microtubules (phycoplastic cytokinesis), whereas the second series did not (nonphycoplastic cytokinesis). Centrioles were connected by a rudimentary striated distal fiber by the time they migrated to the planes of division preceding the first series of cytokinetic division. These first divisions produced binucleate gametocytes. A well-developed flagellar apparatus lay near the cell surface in close proximity to each nucleus of the gametocyte prior to the second series of cytokinetic divisions that produced the uninucleate gametes. As seen in apical view, the paired basal bodies were directly opposed, with no lateral displacement of their longitudinal axes. In lateral view, the paired basal bodies diverged from one another at an angle of 130–180° (female) or 170–180° (male) and were connected by an arched, distal striated fiber about 670–750 nm long and 600 nm at its widest part. Four electron-opaque, pyramid-shaped lateral bodies flanked the basal bodies in close contact with their undersurfaces. The flagellar roots demonstrated a cruciate arrangement, with s = 6–9 over 1 (female gametes) or 7–10 over 1 (male gametes) microtubules and d= 2 microtubules. In male gametes, one of the multistranded roots was located close to the eyespot, and a second system of cytoskeletal microtubules was detected internally. Based on gamete ultrastructure, Atractomorpha porcata appears to be the most undifferentiated member of the genus.  相似文献   

2.
Most vegetative cells of Bulbochaete, and all those of Oedogonium, possess an apical, circular discontinuity in the structure of their secondary wall. Rupture of the wall at this precise site permits expansion of the ring during cell division and release of the zoospore following zoosporogenesis. Certain cells of Bulbochaete (always the apical daughter cell of a division pair) lack this type of discontinuity. Instead, the apical wall is thinned out on one side, so that the cell bulges asymmetrically. In the middle of the bulge is a wall discontinuity which extends only part way around the cell. The wall will rupture here, too, for zoospore release, but if a cell having such a wall, divides, it invariably does so asymmetrically, with one pole of the spindle located in the bulge. Cytokinesis then cuts off a small, colorless daughter cell. The wall ruptures at the discontinuity, and this daughter cell emerges through the slit and differentiates into a hair. The creation of hairs in such cells commences with the deposition of a pad of primary wall lining the bulge. Golgi bodies are involved in its secretion, but not in that of a secondary wall layer which forms next in the premitotic cell and covers the primary wall. The cell becomes polarized; the nucleus migrates toward this region as the chloroplast moves aside. After the asymmetric mitosis, a curved phycoplast cuts off the hair cell nucleus and prevents the chloroplast from moving back into the future hair, whose cytoplasm soon loses much of its affinity for heavy metal stains. Following rupture of the parental wall, the phycoplast moves some distance past the limits of the newly deposited secondary wall layer and then forms a cross wall under the hair. The secondary wall of the hair is not continuous with the secondary wall structure of the parental cell; the circular discontinuity that arises around the base of the bulging parental wall is then perpetuated and accentuated as the hair's secondary wall thickens. This wall weakening becomes the dislocation that will predetermine the site of the ring and consequently the direction of cell expansion in the next normal division of the cell subtending the hair. Abnormal ring formation and the creation of terminal twin hairs have also been examined. The lip of the growing hair contains a characteristic organization of membranes and other components which may be related to the organization of the hair's numerous longitudinally oriented microtubules. These results are discussed in terms of the morphology of the wall in the Oedogionales generally. The creation of the special wall morphology that leads to hair cell formation is considered to be ontogenetically related to a similar wall morphology that is involved in formation of the fertilization pore of the oogonium.  相似文献   

3.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

4.
Summary In the present paper we distinguish between two aspects of sexual reproduction. Genetic recombination is a universal features of the sexual process. It is a primitive condition found in simple, single-celled organisms, as well as in higher plants and animals. Its function is primarily to repair genetic damage and eliminate deleterious mutations. Recombination also produces new variation, however, and this can provide the basis for adaptive evolutionary change in spatially and temporally variable environments.The other feature usually associated with sexual reproduction, differentiated male and female roles, is a derived condition, largely restricted to complex, diploid, multicellular organisms. The evolution of anisogamous gametes (small, mobile male gametes containing only genetic material, and large, relatively immobile female gametes containing both genetic material and resources for the developing offspring) not only established the fundamental basis for maleness and femaleness, it also led to an asymmetry between the sexes in the allocation of resources to mating and offspring. Whereas females allocate their resources primarily to offspring, the existence of many male gametes for each female one results in sexual selection on males to allocate their resources to traits that enhance success in competition for fertilizations. A consequence of this reproductive competition, higher variance in male than female reproductive success, results in more intense selection on males.The greater response of males to both stabilizing and directional selection constitutes an evolutionary advantage of males that partially compensates for the cost of producing them. The increased fitness contributed by sexual selection on males will complement the advantages of genetic recombination for DNA repair and elimination of deleterious mutations in any outcrossing breeding system in which males contribute only genetic material to their offspring. Higher plants and animals tend to maintain sexual reproduction in part because of the enhanced fitness of offspring resulting from sexual selection at the level of individual organisms, and in part because of the superiority of sexual populations in competition with asexual clones.  相似文献   

5.
PICKETT-HEAPS  J. D. 《Annals of botany》1973,37(5):1017-1026
Cell division in Tetraspora sp. is described. The cell becomesimmotile some while before mitosis and the basal bodies withdrawfrom the cell surface. The preprophase nucleus migrates to thebasal body complex, around which increasing numbers of microtubulesgather. The spindle is closed with open polar fenestrae; a basalbody complex is always closely associated with at least onepole. No spindles were observed to have basal bodies at bothpoles, and the spindle may possibly be unicentric. During anaphase,spindle microtubules penetrate through the fenestrae. Aftertelophase, the nuclei come together as a phycoplast forms betweenthem; cytokinesis is effected by furrowing. Forming basal bodiesare frequently encountered in late telophase and cleaving cells;no evidence was obtained that the basal bodies replicated beforemitosis. The protoplast rotates inside the cell wall duringcleavage. Cell division is compared with that of other greenalgae, and in particular, Chlamydomonas.  相似文献   

6.
Analysis of gamete and zygote motility in Allomyces   总被引:3,自引:0,他引:3  
To study the mechanisms of chemotaxis in eukaryotes, the motility patterns of the gametes and zygotes and the chemotactic responses of the male gametes of the lower eukaryote Allomyces macrogynus were examined. Dark-field microscopy of the male gametes showed a smooth swimming pattern interrupted by very brief ‘jerks’ of the cell body that caused a change in swimming direction. Female gametes had a slower swimming velocity than the males and underwent more jerks or turns which accounted for their sluggish motility. The zygotes swam with the fastest velocity and were observed to have a helical swimming pattern involving a continuous turning of the cell body, a behavior absent from the gametes. Introduction of female gametes that produce the chemoattractant sirenin brought about an immediate change in the behavior of the male gametes. They moved in spirals (or helices) towards the source of the chemoattractant (the female gametes), undergoing only a few jerks to reorient the male cells. When very near the female cells, or in high concentrations of added sirenin, many very short motility tracks were observed that finally resulted in contact between the two gamete types. The results indicate that the poor swimming ability of the female gametes facilitates gamete contact, resulting in as many as 30–40 male gametes clustered on a single female cell. Further, male gamete orientation to the sirenin gradient is caused by the chemoattractant suppressing the jerk motion.  相似文献   

7.
During the mating reaction in Chlamydomonas reinhardtii mating type plus and mating type minus gametes adhere to each other via adhesion molecules on their flagellar surfaces. This adhesive interaction induces a sexual signal leading to release of a cell wall degrading enzyme, lysin, that causes wall release and degradation. In this article, we describe the preparation of a polyclonal antibody against the 60,000-Mr lysin polypeptide excised from SDS-PAGE gels. After absorption of the IgG with cell walls to remove antibodies against a carbohydrate epitope common to several Chlamydomonas glycoproteins, the immune IgG reacted with the 60,000-Mr polypeptide, and a 47,000-Mr species that we show here was immunologically cross-reactive with the 60,000-Mr molecule. By use of several fractionation methods including ion exchange and molecular sieve chromatography, sucrose gradient centrifugation, and affinity chromatography, we showed that the 60,000-Mr antigen copurified with lysin activity, thereby demonstrating that the antibody was indeed directed against the enzyme. Immunoblot experiments on suspensions of nonmating and mating gametes showed that the 60,000-Mr antigen was missing in the nonmating gametes. Instead, they contained a 62,000-Mr antigen that was not present in suspensions of mating gametes that had undergone sexual signalling. Furthermore, nonmating gametes whose walls were removed with exogenously added lysin did not contain either form of the antigen. We also found that the 62,000-Mr form of the antigen, which could be released from gametes by freeze-thawing, did not have wall degrading activity. These results indicate that lysin in gametes is stored in the periplasm as a higher relative molecular mass, inactive precursor and also that sexual signalling induces conversion of this molecule to a lower relative molecular mass, active enzyme. This may be a novel example of processing of an extracellular protease induced by cell contact.  相似文献   

8.
Pseudendoclonium basiliense and Trichosarcina polymorpha are essentially identical with regard to the fine structural details of cell division even though one was previously classified in the Chaetophorales and the other in the Ulvales. Cell division in the 2 genera is also shown to be like that in Ulva, as previously suggested might be the case. The combination of mitotic and cytokinetic characteristics common to the 3 genera is distinctive: (1) precocious development of a thick cleavage furrow, (2) centrioles distinctly lateral to polar fenestrae, (3) collapse of the interzonal spindle at telophase, and. (4) a cleavage furrow not associated with microtubules. It is suggested that features of vegetative cell division presently provide the best, characteristics for defining the Ulvaceae and that the use of growth habit should be abandoned. Despite the fact that a phycoplast is not present, in these algae, it is concluded that their affinities lie with genera that do possess a phycoplast.  相似文献   

9.
The development and ultrastructure of the male gamete of Sphaeroplea annulina (Roth) Agardh have been investigated. Multiple mitoses each associated with phycoplast microtubules occur as a result of nitrogen deficiency in the culture medium. A regular cleavage of the cytoplasm delineated by microtubules then occurs, resulting in many young male gametes. During maturation the gametes are retained within a vacuolar envelope. Maturation entails reduction in nuclear size and chromatin condensation, loss of chloroplast thylakoids, endoplasmic reticulum and Golgi apparatus. The apical region where the two flagella are inserted consists of an apical cone and fibrous connections which lie distal to the basal bodies. The study supports the suggestion put forward in a previous paper: namely that the genus Sphaeroplea be retained in a separate order the Sphaeropleales.  相似文献   

10.
Nuclear DNA content of male and female gametes of tobacco was determined using 4,6-diamindino-2-phenylindole and quantitative microfluorimetry. Pollen grains are released with generative cells containing 2C DNA. Mitotic division occurs in the pollen tube 8–12 h after germination. The resulting sperm cells have 1C DNA content during pollen tube elongation in the style. Sperm cells deposited in the degenerated synergid have a DNA content between 1C and 2C, indicating that sperm are in S-phase in the synergid. Concomitant with pollen tube arrival, the egg cell increases in DNA quantity from 1C to between 1C and 2C at 48 h after pollination. In the absence of pollination, S-phase in the egg cell is delayed by up to 36 h. Newly formed zygotes contain nuclear DNA concentrations of 4C at karyogamy and remain at 4C until zygote division. Tobacco displays cell fusion after the completion of S-phase, apparently during G2. Failure to achieve an optimized system for in vitro fertilization in Nicotiana may reflect the challenges of achieving cell cycle synchrony in gametes isolated from pollen tubes. Receptive gametes are presumably those that pass through the protracted S-phase, reaching G2 receptivity and cell cycle congruity before fusion.  相似文献   

11.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   

12.
Cell division in Bulbochaete closely resembles that of Oedogonium, particularly in the involvement of a ring in cell elongation, the structure of the spindle, the existence of complex kinetochores, and the method of cross-wall formation using a phycoplast. Some minor differences between the 2 genera are found. In contrast to Oedogonium, the filaments of Bulbochaete are branched. The site and direction of branching are initially determined by a subtle change in the morphology of the wall, which invariably (if the cell divides) leads to the asymmetrc division that forms a hair cell (these events will be described separately). The position of the wall ring is always precisely determined as in Oedogonium, by the position of a very characteristic weakening in the wall; once a hair cell has been formed, this weakening is located underneath the hair, and all subsequent division and elongation in the cell subtending the hair will necessarily be in the direction of that hair (ie, thereby forming and increasing the length of a branch).  相似文献   

13.
Brooding and the evolution of hermaphroditism   总被引:1,自引:0,他引:1  
It has been suggested that hermaphroditism may evolve when the resources that females can profitably allocate to ova is limited by factors such as lack of brooding space. Spare resources could then be allocated to produce male gametes in a hermaphrodite. A model is developed to investigate the conditions under which this will occur. Hermaphrodites will displace males (and females) if the hermaphrodites produce at least half as many male gametes as a male. If the hermaphrodite produces less than half the number of gametes produced by a male then a stable equilibrium arises where males and hermaphrodites coexist. In this situation the frequency of males is determined by the ratio of the numbers of male gametes produced by hermaphrodites to the numbers produced by males.  相似文献   

14.
Evidence for sexual reproduction was observed in two oceanic dinoflagellate species, Pyrocystis noctiluca Murray ex Haeckel and Pyrocystis lunula (Schütt) Schütt. Observations suggest that cells underwent fertilization as opposed to cell division because of the following: first, fusing cells had a conspicuous pore (fusion pore) connecting the two gametes; dividing cells lacked this feature. In culture, about 0.1% of P. noctiluca cells had a fusion pore, which serves as a possible site for gamete recognition on the cell wall. Second, we document a temporal progression of plasmogamy and karyogamy. Fusion events in both species were observed at the beginning of the day, whereas division stages were most apparent at the end of the day.  相似文献   

15.
Members of the Chlamydomonaceae, mostly single-celled green algae, have been shown to contain a crystalline glycoprotein cell wall component. Most of the species examined fall into a class of algae whose walls have an identical crystalline unit cell. Chlorogonium elongatum has been chosen as a representative of this class in order to investigate in more detail its cell wall structure. The alga has a spindleshaped cell wall which retains its asymmetric shape on isolation. Sections from walls fized in the presence of tannic acid clearly reveal a regular subunit monolayer, about 20 nm thick, within the wall. Sodium dodecylsulphate (SDS) polyacrylamide gel electrophoresis shows the presence of at least 2 major glycoprotein species in the wall. Negatively stained purified cell walls demonstrate the crystalline nature of the cell wall. Optical diffraction of bright-field images and direct electron diffraction both give clear diffraction patterns whose spacings extend out to 3 nm and fall on a reciprocal lattice whose vectors describe a 2-dimensional unit cell within the wall 21.5 nm X 7.0 nm and an included angle of 80 degrees. Lattice defects within the cell wall are revealed by both negative staining and surface replication. Through-focal series were used to choose images with the optimal degree of underfocus for image processing. Linear integration and optical filtering of such images gave essentially the same result. A similar image was also obtained by computing the autocorrelation function of the amplitudes in the electron-diffraction pattern and the optical-diffraction pattern of the in-focus image. On the basis of these data a 2-dimensional model of the crystalline cell wall layer is presented.  相似文献   

16.
Rice internodes are vital for supporting high‐yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell‐producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5‐phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.  相似文献   

17.
Rawitscher -Kunkel , Erika , and L. Machlis . (U. California, Berkeley.) The hormonal integration of sexual reproduction in Oedogonium. Amer. Jour. Bot. 49 (2) : 177–183. Illus. 1962.—Sexual reproduction in a heterothallic, nannandrous species of Oedogonium was investigated cytologically and physiologically. Several new observations are reported. Oogonial mother cells release a substance which attracts androspores to them. The androspores, when attached to the oogonial mother cells, grow in well-defined directions apparently in response to a hormone originating in the oogonial mother cells. An oogonial mother cell divides into an oogonium and a suffultory cell only after the attached androspores complete their development into dwarf males, each bearing an antheridium. Presumably the developing dwarf males provide a chemical stimulus for the division of the oogonial mother cell. During development, the oogonia become enveloped in a massive gel which also encases the antheridia cut off at the apical ends of the dwarf male plants. The gel appears to function as a sperm trap, preventing the dissemination of the sperm into the surrounding liquid. The sperm are attracted to the protoplasmic papilla which briefly protrudes through the oogonial pore indicating the operation of a second chemotactic agent.  相似文献   

18.
Summary Genetic studies have demonstrated biparental inheritance of plastids in alfalfa. The ratio of paternal to maternal plastids in the progeny varies according to the genotypes of the parents, which can be classified as strong or weak transmitters of plastids. Previous cytological investigations of generative cells and male gametes have provided no consistent explanation for plastid inheritance patterns among genotypes. However, plastids in the mature egg cells of a strong female genotype (6–4) were found to be more numerous and larger than in mature eggs of a weak female genotype (CUF-B), and the plastids in 6–4 eggs are positioned equally around the nucleus. In CUF-B, the majority of plastids are positioned below (toward the micropyle) the mid level of the nucleus, which is the future division plane of the zygote. Since only the apical portion of the zygote produces the embryo proper, plastids in the basal portion were predicted to become included in the suspensor cells and not be inherited. In the present study, we examined zygotes and a two-celled proembryo from a cross between CUF-B and a strong male genotype (301), a cross that results in over 90% of the progeny possessing paternal plastids only. Our results indicate that the distribution of plastids observed in the CUF-B egg cell is maintained through the first division of the zygote. Further, paternal plastids are similarly distributed; however, within the apical portion of the zygote and in the apical cell of the two-celled proembryo, the number of paternal plastids is typically much greater than the number of maternal plastids. These findings suggest that maternal and paternal plastid distribution within the zygote is a significant factor determining the inheritance of maternal and paternal plastids in alfalfa.  相似文献   

19.
Summary The potential breeding value of 2n gametes from diploid alfalfa (2n = 2x = 16) was tested by comparing single cross alfalfa hybrids produced via 2n = 2x gametes from diploids versus n = 2x gametes from somatic-chromosome-doubled, tetraploid counterparts. Three diploid clones, designated 2x-(rprp), homozygous for the gene rp (conditions 2n gamete formation by a first division restitution mechanism) were colchicine-doubled to produce their tetraploid counterparts, designated 4x-(SCD). These six clones were crossed as males to the same cytoplasmic male sterile clone. Yield comparisons of progeny from the six clones demonstrated a significant yield increase of the hybrid progeny from 2n = 2x gametes from the diploids over the hybrid progeny from n = 2x gametes from the chromosome doubled tetraploid counterparts. The yield gain ranged from a 12% increase to a 32% increase. Theoretical comparisons indicated the 2n = 2x gametes from diploids would have 12.5 to 50% more heterozygous loci, on average, than the n = 2x gametes derived from somatic doubling. These results confirm the importance of heterozygosity on alfalfa yield, and the results demonstrate that 2n gametes formed by first division restitution offer a unique method for producing highly heterotic alfalfa hybrids.  相似文献   

20.
被子植物受精机制的研究进展   总被引:1,自引:0,他引:1  
被子植物的受精是一个复杂而精巧的过程。花粉管到达子房,通过退化助细胞进入胚囊,释放出两个精细胞。原来在花粉管中相互联结的两个精细胞在退化助细胞中分开,一个与卵细胞融合,另一个与中央细胞融合,完成双受精。目前对双受精过程中有关雌、雄配子识别的机制还知之甚少。本文介绍了目前被子植物精、卵细胞融合前后的细胞周期变化、退化助细胞的功能、精细胞在退化助细胞中迁移的研究动态、精细胞的倾向受精和卵细胞的激活等被子植物受精生物学领域中的一些新的研究成果和发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号