首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.  相似文献   

3.
Depending on the cellular context, Ras can activate characteristic effectors by mechanisms still poorly understood. Promotion by galectin-1 of Ras activation of Raf-1 but not of phosphoinositide 3-kinase (PI3-K) is one such mechanism. In this report, we describe a mechanism controlling selectivity of K-Ras4B (K-Ras), the most important Ras oncoprotein. We show that galectin-3 acts as a selective binding partner of activated K-Ras. Galectin-3 co-immunoprecipitated significantly better with K-Ras-GTP than with K-Ras-GDP, H-Ras, or N-Ras and colocalized with green fluorescent protein-K-Ras(G12V), not with green fluorescent protein-H-Ras(G12V), in the cell membrane. Co-transfectants of K-Ras/galectin-3, but not of H-Ras/galectin-3, exhibited enhanced and prolonged epidermal growth factor-stimulated increases in Ras-GTP, Raf-1 activity, and PI3-K activity. Extracellular signal-regulated kinase (ERK) activity, however, was attenuated in K-Ras/galectin-3 and in K-Ras(G12V)/galectin-3 co-transfectants. Galectin-3 antisense RNA inhibited the epidermal growth factor-stimulated increase in K-Ras-GTP but enhanced ERK activation and augmented K-Ras(G12V) transformation activity. Thus, unlike galectin-1, which prolongs Ras activation of ERK and inhibits PI3-K, K-Ras-GTP/galectin-3 interactions promote, in addition to PI3-K and Raf-1 activation, a third inhibitory signal that attenuates active ERK. These experiments established a novel and specific mechanism controlling the duration and selectivity of signals of active K-Ras, which is extremely important in many human tumors.  相似文献   

4.
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.  相似文献   

5.
Although GTPases of the Ras family have been implicated in many aspects of the regulation of cells, little is known about the roles of individual family members. Here, we analyzed the mechanisms of activation of H-Ras, N-Ras, K-Ras 4B, and M-Ras by two types of external stimuli, growth factors and ligation of the antigen receptors of B or T lymphocytes (BCRs and TCRs). The growth factors interleukin-3, colony-stimulating factor 1, and epidermal growth factor all preferentially activated M-Ras and K-Ras 4B over H-Ras or N-Ras. Preferential activation of M-Ras and K-Ras 4B depended on the presence of their polybasic carboxy termini, which directed them into high-buoyant-density membrane domains where the activated receptors, adapters, and mSos were also present. In contrast, ligation of the BCR or TCR resulted in activation of H-Ras, N-Ras, and K-Ras 4B, but not M-Ras. This pattern of activation was not influenced by localization of the Ras proteins to membrane domains. Activation of H-Ras, N-Ras, and K-Ras 4B instead depended on the presence of phospholipase C-gamma and RasGRP. Thus, the molecular mechanisms leading to activation of Ras proteins vary with the stimulus and can be influenced by either colocalization with activated receptors or differential sensitivity to the exchange factors activated by a stimulus.  相似文献   

6.
After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked under JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.  相似文献   

7.
Galectin-3 (Gal-3) is a pleiotropic beta-galactoside-binding protein expressed at relatively high levels in human neoplasms. Its carbohydrate recognition domain (CRD) contains a hydrophobic pocket that can accommodate the farnesyl moiety of K-Ras. Binding of K-Ras to Gal-3 stabilizes K-Ras in its active (GTP-bound) state. Gal-3, which does not interact with N-Ras, was nevertheless shown to reduce N-Ras-GTP in BT-549 cells by an unknown mechanism that we explored here. First, comparative analysis of various cancer cell lines (glioblastomas, breast cancer cells and ovarian carcinomas) showed a positive correlation between low N-Ras-GTP/high K-Ras-GTP phenotype and Gal-3 expression levels. Next we found that epidermal growth factor-stimulated GTP loading of N-Ras, but not of K-Ras, is blocked in cells expressing high levels of Gal-3. Activation of Ras guanine nucleotide releasing proteins (RasGRPs) by phorbol 12-myristate 13-acetate (PMA) or downregulation of Gal-3 by Gal-3 shRNA increased the levels of N-Ras-GTP in Gal-3 expressing cells. We further show that the N-terminal domain of Gal-3 interacts with and inhibits RasGRP4-mediated GTP loading on N-Ras and H-Ras proteins. Growth of BT-549 cells stably expressing the Gal-3 N-terminal domain was strongly attenuated. Overall, these experiments demonstrate a new control mechanism of Ras activation in cancer cells whereby the Gal-3 N-terminal domain inhibits activation of N-Ras and H-Ras proteins.  相似文献   

8.
The exoenzyme S (ExoS)-producing Pseudomonas aeruginosa strain, 388, and corresponding ExoS knock-out strain, 388Δ exoS , were used in a bacterial and mammalian co-culture system as a model for the contact-dependent delivery of ExoS into host cells. Examination of DNA synthesis and Ras ADP-ribosylation in tumour cell lines expressing normal and mutant Ras revealed a decrease in DNA synthesis concomitant with ADP-ribosylation of Ras proteins after exposure to ExoS-producing bacteria, but not after exposure to non-ExoS-producing bacteria. Examination of normal H-Ras, K-Ras and N-Ras by two-dimensional electrophoresis after exposure to bacteria revealed differences in the degree of ADP-ribosylation by ExoS, with H-Ras being modified most extensively. ADP-ribosylation of oncogenic forms of Ras was examined in vivo using cancer lines expressing mutant forms of H-, N- or K-Ras. The mutant Ras proteins were modified in a manner qualitatively similar to their normal counterparts. Using Ras/Raf-1 co-immunoprecipitation after co-culture, it was found that exposure to ExoS-producing bacteria caused a decrease in the amount of Raf-1 associated with EGF-activated Ras and oncogenic Ras. The results from this study indicate that ExoS ADP-ribosylates both normal and mutant Ras proteins in vivo and inhibits signalling through Ras.  相似文献   

9.
Targeting of K-Ras 4B by S-trans,trans-farnesyl thiosalicylic acid   总被引:2,自引:0,他引:2  
Ras proteins regulate cell growth, differentiation and apoptosis. Their activities depend on their anchorage to the inner surface of the plasma membrane, which is promoted by their common carboxy-terminal S-farnesylcysteine and either a stretch of lysine residues (K-Ras 4B) or S-palmitoyl moieties (H-Ras, N-Ras and K-Ras 4A). We previously demonstrated dislodgment of H-Ras from EJ cell membranes by S-trans,trans-farnesylthiosalicylic acid (FTS), and proposed that FTS disrupts the interactions between the S-prenyl moiety of Ras and the membrane anchorage domains. In support of this hypothesis, we now show that FTS, which is not a farnesyltransferase inhibitor, inhibits growth of NIH3T3 cells transformed by the non-palmitoylated K-Ras 4B(12V) or by its farnesylated, but unmethylated, K-Ras 4B(12) CVYM mutant. The growth-inhibitory effects of FTS followed the dislodgment and accelerated degradation of K-Ras 4B(12V), leading in turn to a decrease in its amount in the cells and inhibition of MAPK activity. FTS did not affect the rate of degradation of the K-Ras 4B, SVIM mutant which is not modified post-translationally, suggesting that only farnesylated Ras isoforms are substrates for facilitated degradation. The putative Ras-recognition sites (within domains in the cell membrane) appear to tolerate both C(15) and C(20) S-prenyl moeities, since geranylgeranyl thiosalicylic acid mimicked the growth-inhibitory effects of FTS in K-Ras 4B(12V)-transformed cells and FTS inhibited the growth of cells transformed by the geranylgeranylated K-Ras 4B(12V) CVIL isoform. The results suggest that FTS acts as a domain-targeted compound that disrupts Ras-membrane interactions. The fact that FTS can target K-Ras 4B(12V), which is insensitive to inhibition by farnesyltransfarase inhibitors, suggests that FTS may target Ras (and other prenylated proteins important for transformed cell growth) in an efficient manner that speaks well for its potential as an anticancer therapeutic agent.  相似文献   

10.
The ErbB family of receptor tyrosine kinases regulates cell growth, differentiation and survival. Activation of the receptors is induced by specific growth factors in an autocrine, paracrine or juxtacrine manner. The activated ErbB receptors turn on a large variety of signaling cascades, including the prominent Ras-dependent signaling pathways. The activated Ras can induce secretion of growth factors such as EGF and neuregulin, which activate their respective receptors. In the present study, we demonstrate for the first time that activated Ras can activate ErbB4 receptor in a ligand-independent manner. Expression of constitutively active H-Ras(12V), K-Ras(12V) or N-Ras(13V) in PC12-ErbB4 cells induced ErbB4-receptor phosphorylation, indicating that each of the most abundant Ras isoforms can induce receptor activation. NRG-induced phosphorylation of ErbB4 receptor was blocked by the soluble ErbB4 receptor, which had no effect on the Ras-induced receptor phosphorylation. Moreover, conditioned medium from H-Ras(12V)-transfected PC12-ErbB4 cells had no effect on receptor phosphorylation. It thus indicates that Ras induces ErbB4 phosphorylation in a ligand-independent manner. Each of the Ras effector domain mutants, H-Ras(12V)S35, H-Ras(12V)C40, and H-Ras(12V)G37, which respectively activate Raf1, PI3K, and RalGEF, induced a small but significant receptor phosphorylation. The PI3K inhibitor LY294002 and the MEK inhibitor PD98059 caused a partial inhibition of the Ras-induced ErbB4 receptor phosphorylation. Using a mutant ErbB4 receptor, which lacks kinase activity, we demonstrated that the Ras-mediated ErbB4 phosphorylation depends on the kinase activity of the receptor and facilitates ligand-independent neurite outgrowth in PC12-ErbB4 cells. These experiments demonstrate a novel mechanism controlling ErbB receptor activation. Ras induces ErbB4 receptor phosphorylation in a non-autocrine manner and this activation depends on multiple Ras effector pathways and on ErbB4 kinase activity.  相似文献   

11.
12.
Internalization of H-Ras from the cell surface onto endomembranes through vesicular endocytic pathways may play a significant role(s) in regulating the outcome of Ras signaling. However, the identity of Ras-associated subcellular vesicles and the means by which Ras localize to these internal sites remain elusive. In this study, we show that H-Ras is absent from endosomes initially derived from a clathrin-dependent endocytic pathway. Instead, both oncogenic H-Ras-61L and wild type H-Ras (basal or EGF-stimulated) bind Arf6-associated clathrin-independent endosomes and vesicles of the endosomal-recycling center (ERC). K-Ras4B-12V can also be internalized via Arf6 endosomes, and the C-terminal tails of both H-Ras and K-Ras4B are sufficient to mediate localization of GFP chimeras to Arf6-associated vesicles. Interestingly, little Raf-1 was found on these Arf6-associated endosomes even when active H-Ras was present. Instead, endogenous Raf-1 distributed primarily on EEA1-containing vesicles, suggesting that this H-Ras effector, although accessible for H-Ras interaction on the plasma membrane, appears to separate from its regulator during early stages of endocytosis. The discrete and dynamic distribution of Ras pathway components with spatio-temporal complexity may contribute to the specificity of Ras:effector interaction.  相似文献   

13.
H-, N-, and K-Ras are isoforms of Ras proteins, which undergo different lipid modifications at the C terminus. These post-translational events make possible the association of Ras proteins both with the inner plasma membrane and to the cytosolic surface of endoplasmic reticulum and Golgi complex, which is also required for the proper function of these proteins. To better characterize the intracellular distribution and sorting of Ras proteins, constructs were engineered to express the C-terminal domain of H- and K-Ras fused to variants of green fluorescent protein. Using confocal microscopy, we found in CHO-K1 cells that H-Ras, which is palmitoylated and farnesylated, localized at the recycling endosome in addition to the inner leaflet of the plasma membrane. In contrast, K-Ras, which is farnesylated and nonpalmitoylated, mainly localized at the plasma membrane. Moreover, we demonstrate that sorting signals of H- and K-Ras are contained within the C-terminal domain of these proteins and that palmitoylation on this region of H-Ras might operate as a dominant sorting signal for proper subcellular localization of this protein in CHO-K1 cells. Using selective photobleaching techniques, we demonstrate the dynamic nature of H-Ras trafficking to the recycling endosome from plasma membrane. We also provide evidence that Rab5 and Rab11 activities are required for proper delivery of H-Ras to the endocytic recycling compartment. Using a chimera containing the Ras binding domain of c-Raf-1 fused to a fluorescent protein, we found that a pool of GTP-bound H-Ras localized on membranes from Rab11-positive recycling endosome after serum stimulation. These results suggest that H-Ras present in membranes of the recycling endosome might be activating signal cascades essential for the dynamic and function of the organelle.  相似文献   

14.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

15.
Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.  相似文献   

16.
Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer.  相似文献   

17.
Membrane anchorage of Ras proteins is important for their signaling and oncogenic potential. K-Ras4B (K-Ras), the Ras isoform most often mutated in human cancers, is the only Ras isoform where a polybasic motif contributes essential electrostatic interactions with the negatively charged cytoplasmic leaflet. Here we studied the effects of the cationic amphiphilic drug chlorpromazine (CPZ) on the membrane association of oncogenic K-Ras(G12V), cell proliferation, and apoptosis. Combining live cell microscopy, FRAP beam size analysis, and cell fractionation studies, we show that CPZ reduces the association of GFP-K-Ras(G12V) with the plasma membrane and increases its exchange between plasma membrane and cytoplasmic pools. These effects appear to depend on electrostatic interactions because the membrane association of another related protein that has a membrane-interacting polybasic cluster (Rac1(G12V)) was also affected, whereas that of H-Ras was not. The weakened association with the plasma membrane led to a higher fraction of GFP-K-Ras(G12V) in the cytoplasm and in internal membranes, accompanied by either cell cycle arrest (PANC-1 cells) or apoptosis (Rat-1 fibroblasts), the latter being in correlation with the targeting of K-Ras(G12V) to mitochondria. In accord with these results, CPZ compromised the transformed phenotype of PANC-1 cells, as indicated by inhibition of cell migration and growth in soft agar.  相似文献   

18.
Ras proteins activate diverse effector molecules. Depending on the cellular context, Ras activation may have different biological consequences: induction of cell proliferation, senescence, survival, or death. Augmentation and selective activation of particular effector molecules may underlie various Ras actions. In fact, Ras effector-loop mutants interacting with distinctive effectors provide evidence for such selectivity. Interactions of active Ras with escort proteins, such as galectin-1, could also direct Ras selectivity. Here we show that in comparison with Ras transfectants, H-Ras/galectin-1 or K-Ras4B/galectin-1 co-transfectants exhibit enhanced and prolonged epidermal growth factor (EGF)-stimulated increases in Ras-GTP, Raf-1 activity, and active extracellular signal-regulated kinase. Galectin-1 antisense RNA inhibited these EGF responses. Conversely, Ras and galectin-1 co-transfection inhibited the EGF-stimulated increase in phosphoinositide 3-kinase (PI3K) activity. Galectin-1 transfection also inhibited Ras(G12V)-induced PI3K but not Raf-1 activity. Galectin-1 co-immunoprecipitated with Ras(G12V) or with Ras(G12V/T35S) that activate Raf-1 but not with Ras(G12V/Y40C) that activates PI3K. Thus, galectin-1 binds active Ras and diverts its signal to Raf-1 at the expense of PI3K. This demonstrates a novel mechanism controlling the duration and selectivity of the Ras signal. Ras gains selectivity when it is associated with galectin-1, mimicking the selectivity of Ras(T35S), which activates Raf-1 but not PI3K.  相似文献   

19.
Growth factor signaling is implicated in the regulation of lens cell proliferation and differentiation during development. Activation of growth factor receptor tyrosine kinases is known to activate Ras proteins, small GTP-binding proteins that function as part of the signal transduction machinery. In the present study, we examined which classical Ras genes are expressed in lens cells during normal development and whether expression of an activated version of Ras is sufficient to induce either lens cell proliferation or fiber cell differentiation in transgenic mice. In situ hybridization showed H-Ras, K-Ras and N-Ras are ubiquitously expressed in all cells of the embryonic (E13.5) eye, with N-Ras showing the highest level of expression. The expression level of N-Ras decreases during later stages of embryonic development, and is nearly undetected in postnatal day 21 lenses. To generate transgenic mice, a constitutively active H-Ras mutant was linked to a chimeric regulatory element containing the mouse alphaA-crystallin promoter fused to the chick delta1-crystallin lens enhancer element. In the lenses of the transgenic mice, the transgene was expressed in both lens epithelial and fiber cells. Expression of activated Ras was sufficient to stimulate lens cell proliferation but not differentiation, implying that alternative or additional signal transduction pathways are required to induce fiber cell differentiation.  相似文献   

20.
Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated MCF10A human breast epithelial cell lines. Using these, we showed that p38 kinase is a key signaling molecule differentially regulated between H-Ras and N-Ras, leading to H-Ras-specific induction of invasive and migrative phenotypes. The present study is to further investigate H-Ras- and N-Ras-mediated signaling pathways and to unveil how these pathways are integrated for regulation of invasive/migrative phenotypic conversion of human breast epithelial cells. Here we report that the Rac-MAPK kinase (MKK)3/6-p38 pathway is a unique signaling pathway activated by H-Ras, leading to the invasive/migrative phenotype. In contrast, Raf-MEK-ERK and phosphatidylinositol 3-kinase-Akt pathways, which are fundamental to proliferation and differentiation, are activated by both H-Ras and N-Ras. A significant role for p38 in cell invasion is further supported by the observation that p38 activation by MKK6 transfection is sufficient to induce invasive and migrative phenotypes in MCF10A cells. Activation of the MKK6-p38 pathway results in a marked induction of matrix metalloproteinase (MMP)-2, whereas it had little effect on MMP-9, suggesting MMP-2 up-regulation by MKK6-p38 pathway as a key step for H-Ras-induced invasion and migration. We also provide evidence for cross-talk among the Rac, Raf, and phosphatidylinositol 3-kinase pathways critical for regulation of MMP-2 and MMP-9 expression and invasive phenotype. Taken together, the present study elucidated the role of the Rac-MKK3/6-p38 pathway leading to H-Ras-specific induction of malignant progression in breast epithelial cells, providing implications for developing therapeutic strategies for mammary carcinoma to target Ras downstream signaling molecules required for malignant cancer cell behavior but less critical for normal cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号