首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donaldson LW 《Biochemistry》2008,47(11):3379-3388
In Staphylococcus aureus, a two-component signaling system consisting of the histidine kinase VraS and the response regulator VraR stimulates gene expression in response to antibiotics that inhibit cell wall formation. With respect to understanding the mechanism of the VraSR response and precise interaction of VraR at promoter sites, the structure of the VraR DNA binding domain (DBD) was determined using NMR methods. The DBD demonstrates a four-helix configuration that is shared with the NarL/FixJ family of response regulators and is monomeric in solution. Unobservable amide resonances in VraR NMR spectra coincided with a set of DNA backbone contact sites predicted from a model of a VraR-DNA complex. This observation suggests that a degree of conformational sampling is required to achieve a high-affinity interaction with DNA. On the basis of chemical shift differences and line broadening, an amino-terminal 3 10 helix and a portion of helix H4 identify a continuous surface that may link the DBD to the receiver domain. The full-length VraR protein thermally denatured with a single transition, suggesting that the receiver domain and DBD were integrated and not simply tethered. Of note, the DBD alone denatured at a temperature that was 21 degrees C higher than that of the full-length protein. Thus, the DBD appears to be thermodynamically and structurally sensitive to state of the receiver domain.  相似文献   

2.
3.
4.
5.
The Staphylococcus aureus Vancomycin-resistance-associated response regulator VraR is known as an important response regulator, member of the VraTSR three-component signal transduction system that modulates the expression of the cell wall stress stimulon in response to a number of different cell wall active antibiotics. Given its crucial role in regulating gene expression in response to antibiotic challenges, VraR must be tightly regulated. We report here for the first time in S. aureus convergence of two major signal transduction systems, serine/threonine protein kinase and two (three)-component systems. We demonstrate that VraR can be phosphorylated by the staphylococcal Ser/Thr protein kinase Stk1 and that phosphorylation negatively affects its DNA-binding properties. Mass spectrometric analyses and site-directed mutagenesis identified Thr106, Thr119, Thr175 and Thr178 as phosphoacceptors. A S. aureus ΔvraR mutant expressing a VraR derivative that mimics constitutive phosphorylation, VraR_Asp, still exhibited markedly decreased antibiotic resistance against different cell wall active antibiotics, when compared to the wild-type, suggesting that VraR phosphorylation may represent a novel and presumably more general mechanism of regulation of the two (three)-component systems in staphylococci.  相似文献   

6.
Many surface proteins of Gram-positive bacteria are anchored to the cell wall envelope by a transpeptidation mechanism, requiring a C-terminal sorting signal with a conserved LPXTG motif. Sortase, a membrane protein of Staphylococcus aureus, cleaves polypeptides between the threonine and the glycine of the LPXTG motif and catalyses the formation of an amide bond between the carboxyl-group of threonine and the amino-group of peptidoglycan cross-bridges. S. aureus mutants lacking the srtA gene fail to anchor and display some surface proteins and are impaired in the ability to cause animal infections. Sortase acts on surface proteins that are initiated into the secretion (Sec) pathway and have their signal peptide removed by signal peptidase. The S. aureus genome encodes two sets of sortase and secretion genes. It is conceivable that S. aureus has evolved more than one pathway for the transport of 20 surface proteins to the cell wall envelope.  相似文献   

7.
ALE-1, a homologue of lysostaphin, is a peptidoglycan hydrolase that specifically lyses Staphylococcus aureus cell walls by cleaving the pentaglycine linkage between the peptidoglycan chains. Binding of ALE-1 to S. aureus cells through its C-terminal 92 residues, known as the targeting domain, is functionally important for staphylolytic activity. The ALE-1-targeting domain belongs to the SH3b domain family, the prokaryotic counterpart of the eukaryotic SH3 domains. The 1.75 angstroms crystal structure of the targeting domain shows an all-beta fold similar to typical SH3s but with unique features. The structure reveals patches of conserved residues among orthologous targeting domains, forming surface regions that can potentially interact with some common features of the Gram-positive cell wall. ALE-1-targeting domain binding studies employing various bacterial peptidoglycans demonstrate that the length of the interpeptide bridge, as well as the amino acid composition of the peptide, confers the maximum binding of the targeting domain to the staphylococcal peptidoglycan. Truncation of the highly conserved first 9 N-terminal residues results in loss of specificity to S. aureus cell wall-targeting, suggesting that these residues confer specificity to S. aureus cell wall.  相似文献   

8.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

9.
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.  相似文献   

10.
A gene (mgt) encoding a monofunctional glycosyltransferase (MGT) from Staphylococcus aureus has been identified. This first reported gram-positive MGT shared significant homology with several MGTs from gram-negative bacteria and the N-terminal glycosyltransferase domain of class A high-molecular-mass penicillin-binding proteins from different species. S. aureus MGT contained an N-terminal hydrophobic domain perhaps involved with membrane association. It was expressed in Escherichia coli cells as a truncated protein lacking the hydrophobic domain and purified to homogeneity. Analysis by circular dichroism revealed that secondary structural elements of purified truncated S. aureus MGT were consistent with predicted structural elements, indicating that the protein might exhibit the expected folding. In addition, purified S. aureus MGT catalyzed incorporation of UDP-N-acetylglucosamine into peptidoglycan, proving that it was enzymatically active. MGT activity was inhibited by moenomycin A, and the reaction product was sensitive to lysozyme treatment. Moreover, a protein matching the calculated molecular weight of S. aureus MGT was identified from an S. aureus cell lysate using antibodies developed against purified MGT. Taken together, our results suggest that this enzyme is natively present in S. aureus cells and that it may play a role in bacterial cell wall biosynthesis.  相似文献   

11.
The polymerization of peptidoglycan is the result of two types of enzymatic activities: transglycosylation, the formation of linear glycan chains, and transpeptidation, the formation of peptide cross-bridges between the glycan strands. Staphylococcus aureus has four penicillin binding proteins (PBP1 to PBP4) with transpeptidation activity, one of which, PBP2, is a bifunctional enzyme that is also capable of catalyzing transglycosylation reactions. Additionally, two monofunctional transglycosylases have been reported in S. aureus: MGT, which has been shown to have in vitro transglycosylase activity, and a second putative transglycosylase, SgtA, identified only by sequence analysis. We have now shown that purified SgtA has in vitro transglycosylase activity and that both MGT and SgtA are not essential in S. aureus. However, in the absence of PBP2 transglycosylase activity, MGT but not SgtA becomes essential for cell viability. This indicates that S. aureus cells require one transglycosylase for survival, either PBP2 or MGT, both of which can act as the sole synthetic transglycosylase for cell wall synthesis. We have also shown that both MGT and SgtA interact with PBP2 and other enzymes involved in cell wall synthesis in a bacterial two-hybrid assay, suggesting that these enzymes may work in collaboration as part of a larger, as-yet-uncharacterized cell wall-synthetic complex.  相似文献   

12.
Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in beta-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.  相似文献   

13.

Background  

Staphylococcus aureus activates a protective cell wall stress stimulon (CWSS) in response to the inhibition of cell wall synthesis or cell envelope damage caused by several structurally and functionally different antibiotics. CWSS induction is coordinated by the VraSR two-component system, which senses an unknown signal triggered by diverse cell wall active agents.  相似文献   

14.
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.  相似文献   

15.
A two-component system consisting of the histidine kinase vancomycin-resistance-associated sensor and the response regulator vancomycin-resistance-associated regulator (VraR) allows Staphylococcus aureus to sense antibiotic-related cell wall stress and to mount a suitable response. An experimental structure of full-length VraR is not available yet, but previous work points to similarities between VraR and the well-characterized NarL. This work employs hydrogen exchange mass spectrometry to gain insights into the phosphorylation-induced activation of VraR, a process that primes the protein for dimerization and DNA binding. Whereas VraR is highly dynamic, phosphorylated VraR shows less extensive deuteration. This rigidification is most dramatic within the receiver domain, which carries the phosphorylation site D55. Alterations in the DNA-binding domain are much less pronounced. Changes in deuteration within the receiver domain are consistent with a Y-T coupling mechanism. In analogy to NarL, the activation of VraR is thought to involve separation and subsequent reorientation of the two domains, thereby allowing the α8-turn-α9 element to engage in DNA binding. The current work suggests that this structural transition is triggered by a reduction in the effective length of the linker through enhanced hydrogen bonding. In addition, separation of the two domains may be favored by the establishment of noncovalent protein-protein interactions and intradomain contacts at the expense of previously existing interdomain bonds. α9 appears to be packed against the receiver domain in nonactivated VraR. Support is presented for α1 as a dimerization interface in phosphorylated VraR, whereas protein-protein interactions for nonphosphorylated VraR are impeded by extensive disorder in this region.  相似文献   

16.
17.
Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus , this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus , Bacillus subtilis and S. thermophilus . Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus .  相似文献   

18.
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.  相似文献   

19.
Electromechanical Interactions in Cell Walls of Gram-Positive Cocci   总被引:28,自引:19,他引:9       下载免费PDF全文
Isolated cell walls of Staphylococcus aureus and Micrococcus lysodeikticus were found to expand and contract in response to changes in environmental pH and ionic strength. These volume changes, which could amount to as much as a doubling of wall dextran-impermeable volume, were related to changes in electrostatic interactions among fixed, ionized groups in wall polymers, including peptidoglycans. S. aureus walls were structurally more compact in the hydrated state and had a higher maximum charge density than M. lysodeikticus walls. However, they were less responsive to changes in electrostatic interactions, apparently because of less mechanical compliance. In media of nearly neutral pH, S. aureus walls had a net positive charge whereas M. lysodeikticus walls had a net negative charge. These charge differences were reflected in Donnan distributions of mobile ions between wall phases and bulk medium phases. Cell walls of unfractionated cocci also could be made to swell and contract, and wall tonus in intact cells appeared to be set partly by electrostatic interactions and partly by mechanical tension in the elastic structures due to cell turgor pressure. The experimental results led to the conclusions that bacterial cell walls have many of the properties of polyelectrolyte gels and that peptidoglycans are flexible polymers. A reasonable mechanical model for peptidoglycan structure might be a sort of three-dimensional rope ladder with relatively rigid, polysaccharide rungs and relatively flexible polypeptide ropes. Thus, the peptidoglycan network surrounding cocci appeared to be predominantly an elastic restraining structure rather than a rigid shell.  相似文献   

20.
To investigate the evolution and immune function of C-type lectin in amphioxus, the primitive representative of the chordate phylum, we identified three C-type lectins consisting solely of a carbohydrate recognition domain and N-terminal signal peptide and found that they had distinct express patterns in special tissues and immune response to stimulations analyzed by quantitative real-time PCR. We characterized the biochemical and biological properties of AmphiCTL1, which was dramatically up-regulated in amphioxus challenged with Staphylococcus aureus, Saccharomyces cerevisiae, and zymosan. Immunohistochemistry demonstrated that the localization of AmphiCTL1 protein was exclusively detected in the inner folding tissues of the hepatic diverticulum. Recombinant AmphiCTL1 was characterized as a typical Ca2+-dependent carbohydrate-binding protein possessing hemagglutinating activity, preferentially bound to all examined four Gram-positive bacteria and two yeast strains, but had little binding activity toward four Gram-negative bacteria we tested. It aggregated S. aureus and S. cerevisiae in a Ca2+-dependent manner and specifically bound to insoluble peptidoglycan and glucan, but not to LPS, lipoteichoic acid, and mannan. Calcium increased the intensity of the interaction between AmphiCTL1 and those components, but was not essential. This lectin directly killed S. aureus and S. cerevisiae in a Ca2+-independent fashion, and its binding to microorganism cell wall polysaccharides such as peptidoglycan and glucan preceded microbial killing activity. These findings suggested that AmphiCTL1 acted as a direct microbial killing C-type lectin through binding microbial targets via interaction with peptidoglycan and glucan. Thus, AmphiCTL1 may be an evolutionarily primitive form of antimicrobial protein involved in lectin-mediated innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号