首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
A preliminary analysis of 175 specimens of the white-streaked grouper, Epinephelus ongus (Serranidae), was undertaken to determine life history characteristics of the species. Sagittal otoliths, stomachs, and a subsample of gonads were removed to determine age at length, diet, and reproductive strategy. The von Bertalanffy growth equation was used to describe growth in this species and yielded the growth parameters L = 438.3, K = 0.04334, and t0 = −8.752. Fish ranged in age from 1 to 20 years. Diet was consistent with other serranid species and included crabs, shrimps, octopi, and fishes. Based on a very limited number of specimens (n = 12), the larger size and older age of males compared to females suggests that E. ongus may be a protogynous hermaphrodite.  相似文献   

2.
The age of Japanese eels (Anguilla japonica) is often estimated from otoliths, but this method has not been fully validated, particularly in tropical areas where the annulus in otolith is considered to be less distinct than in temperate areas. To validate the annuli in Japanese eel otoliths from southern Taiwan, known-age (2 year-old) cultured eels from an eel farm and wild eels from Kao-Ping River were collected. It was found that 26 out of 31 cultured eels (83.9%) showed two clear annuli and the remained 5 eels showed either one or three annuli. The mean (± SD) age of the cultured eels was 1.97 ± 0.4 years. Meanwhile, a clear peak in the mean monthly marginal increment ratio of the otolith in wild yellow and silver eels occurred once a year during winter (November to March). The annual deposition of presumed annuli in otoliths of Japanese eel was validated and the age and growth rate estimation for Japanese eels in the tropical southern Taiwan is deemed feasible. The growth rate of cultured eels was significantly faster than that of wild eels, but it did not differ significantly between sexes for wild silver, yellow or cultured eels. The von Bertalanffy Growth Function parameters (K, and t 0 ) of the wild eels were estimated as 0.114 ± 0.028 year−1, 1178 ± 171 mm and −0.8 ± 0.2 years, respectively.  相似文献   

3.
Hypoxia caused by eutrophication occurs over large areas in aquatic systems worldwide. Common carp (Cyprinus carpio) exposed to hypoxia (1 mg · O2 · l−1 and 2 mg · O2 · l−1) for 1 week showed a significant reduction in feeding rate, respiration rate, faecal production and nitrogenous excretion compared to those maintained at normoxia (7 mg · O2 · l−1). Fish exposed to hypoxia showed negative scope for growth (SfG), but no significant difference in the specific growth rate was revealed after 1 week in both hypoxic groups. A significant reduction in RNA/DNA ratio was, however, clearly evident in the white muscle of the 1 mg · O2 · l−1 treatment group, but not in the 2 mg · O2 · l−1 treatment group. Both specific growth rate and RNA/DNA ratio were significantly reduced when fish were exposed to severe hypoxia (0.5 mg · O2 · l−1) for 4 weeks. At all levels of hypoxia, growth reduction was accompanied by a significant decrease in RNA/DNA ratio in white muscle. Covariance analysis showed no significant difference between the slope of RNA/DNA ratio and growth rate under normoxic conditions and 0.5 mg · O2 · l−1 for 4 weeks (F=1.036, P > 0.326), as well as 1.0 mg · O2 · l−1 and 2.0 mg · O2 · l−1 for 1 week (F = 0.457, P > 0.5), indicating that the RNA/DNA ratio serves as a biomarker of growth under all oxygen levels, at least under controlled experimental conditions. SfG also appears to be more sensitive than the RNA/DNA ratio in responding to hypoxia in fish. Accepted: 15 September 2000  相似文献   

4.
Schizopygopsis younghusbandi younghusbandi is an endemic species whose distribution is restricted to the middle reaches of the Yarlung Zangbo River, being one of the most important commercial fishes in this area. Age and growth of 606 specimens captured between October 2002 and April 2005 were studied. The range in standard length (L) was 65.7–387.3 mm and total weight (W) was 3.3–772.0 g. The relationship between L and W was W = 0.000909L2.2493 for males and W = 0.000259L2.4781 for females. Age, determined from anal scales and lapillus otoliths, ranged from 3 to 18 years. The parameters of von Bertalanffy growth functions, estimated by back-calculated length, were L = 442.7mm  LL_\infty = 442.7mm\;L, k = 0.0738 year−1 and t 0  = −1.4 year for males, and L = 471.4mm  LL_\infty = 471.4mm\;L, k = 0.0789 year−1 and t 0 = 0.2 year for females. Males and females exhibited statistically significant differences in growth. χ 2-test indicated that von Bertalanffy growth functions could well describe the growth of S. y. younghusbandi. The longevities were 39.2 and 38.2 years for males and females, respectively. Growth inflexion points were 10.2 and 12.0 years for males and females, respectively, but 84.8% of the captures were at the smaller ages. So conservation and management schemes for this population should be considered urgently. In addition, we found that populations from the upstream of the Lhasa River, the downstream of the Lhasa River and the middle reaches of the Yarlung Zangbo River showed statistically significant differences in growth patterns.  相似文献   

5.
Nelusetta ayraudi (the ocean leatherjacket) is an endemic Australian monacanthid species distributed from North West Cape (Western Australia) south to southern Queensland. The commercial and recreational fisheries targeting Nelusetta ayraudi have expanded substantially along the coast of New South Wales (NSW) in recent years but there exists little biological information on which to base effective management of this growing fishery. World-wide, only a few studies have aged monacanthids. Of these, researchers have interpreted periodic increments in bony structures such as vertebrae and anterior dorsal spines in preference to those found in otoliths. In this study we estimated age of N. ayraudi by counting growth increments in sectioned otoliths. The periodicity of increment formation was validated using a vital stain, (oxy-tetracycline), injected into young-of-the-year fish. Growth was rapid especially as juveniles with N. ayraudi attaining approximately 220 mm after 1 year and 340 mm after 2 years. No differences in growth rates were detected between sexes or between fish captured at different latitudes (zones). The largest male (605 mm, Total Length—TL) and female (656 mm, TL) were both recorded from northern NSW, with both sexes attaining the maximum age of 6+ years from northern and southern NSW. The von Bertalanffy parameters describing growth for N. ayraudi were L {L_\infty }  = 591 mm (TL), k = 0.377 year−1 and t o = −0.247 years.  相似文献   

6.
The growth rate, reproductive aspects, and natural mortality of chimaeras and ratfish are poorly known. In this study, life-history parameters for cockfish Callorhinchus callorhynchus (Holocephali—Callorhinchidae) are estimated, which is an important fish resource exploited in Chile. Specimens were sampled from the artisanal fishery captures, from November 2006 to November 2007. The standard length (SL) of males fluctuated between 20 and 62 cm, and between 21 and 70 cm for females. Von Bertalanffy growth parameters were estimated through length-frequency data analysis using MULTIFAN. The length-weight relationship and von Bertalanffy growth parameters were significantly different for males and females, as well as the length at 50% maturity. For males a model with 5 age-classes was the best, with asymptotic length L  = 52 cm SL, growth coefficient K = 0.473 yr−1, and age at length zero t 0 = −0.690 yrs. For females the best model was represented by 10 age-classes (L  = 70.3 cm SL, K = 0.193 yr−1, t 0 = −1.158 yrs) in the length-frequency data sets. Length at 50% maturity of males was estimated in 43.7 cm SL, and in 50.2 cm SL for females. The natural mortality rate fluctuated between 0.42 and 0.82 yr−1 for males and between 0.12 and 0.37 yr−1 for females, depending upon the method used. It is concluded that C. callorhynchus is a species with life-history parameters significantly different between males and females, and such differences should be taken into account in future population dynamics analysis.  相似文献   

7.
Age and growth of the nototheniid fishTrematomus bernacchii Boulenger 1902 were estimated by reading the sagittal otoliths of 457 adult specimens caught off Terra Nova Bay (Ross Sea) in the austral summer 1990–1991. Annuli in ground and polished otoliths were examined using a dissecting microscope under reflected light. The Von Bertalanffy growth equation was Lt=273.5 [1 − e−0.109(t+2.10)] for males (n=122) and Lt=422.2 [1 − e−0.055(t+1.92)] for females (n=211) where L is total length in millimetres. Maximum estimated age was 21 years for females and 16 years for males. This is in agreement with the hypothesis that considers slow growth and old age as a typical feature of Antarctic fishes.  相似文献   

8.
Since fishery management regulations have shifted much of the groundfish trawl effort in the northeastern Pacific from the continental shelf to the slope, fishery impacts on unassessed demersal slope rockfish species like the aurora rockfish (Sebastes aurora) may have increased. Understanding the life history of these species is a critical first step in developing management strategies to protect them from overharvest. In this study we employ cross-dating methods to validate the annual periodicity of growth increments and investigate the age, growth and maturity of aurora rockfish, a species for which life history information is quite limited. Specimens were collected on an opportunistic basis from Oregon commercial landings and from research cruises, over the years 2003–2006. Age was estimated for 438 individuals using otoliths processed via the break-and-burn method. The maximum estimated age was 118 years for females (n = 324) and 81 years for males (n = 114). The von Bertalanffy growth function showed that males grow faster and reach a smaller maximum size than females (males: L inf = 34, K = 0.09, t 0 = −1.9; females: L inf = 37, K = 0.06, t 0 = −5.5), though both sexes demonstrate relatively slow growth. Visual assessment of ovaries showed that the aurora rockfish is a synchronous spawner with parturition occurring in May and June off Oregon. Female age and length at 50% maturity were calculated at 12.6 years and 26 cm, respectively (n = 307). Maturity and age data provided evidence for a protracted adolescence in this species.  相似文献   

9.
In three tropical rain forest light environments in Sabah, Malaysia, we compared photosynthesis in seedlings of ten climax tree species with putatively differing shade tolerances. The objectives of the study were (a) to characterise the range of photosynthetic responses in ten species of the Dipterocarpaceae and (b) to elucidate those photosynthetic characteristics that might provide a basis for niche partitioning. Seedlings were acclimated (c. 7 months) in three light environments; understorey, partial shade and a gap (140 m2). The light environments represented a gradation in median diurnal (0630–1830 hours) photon flux density (PFD) ranging from understorey (4.7 μmol m−2 s−1), through partial shade (21.2 μmol m−2 s−1) to gap (113.7 μmol m−2 s−1). Integrated diurnal PFD were in the sequence gap > partial shade > understorey (15.2, 4.7, 1.3 mol m−2 day−1, respectively). In gap-acclimated plants, species differed in the photosynthetic light-response variables apparent quantum yield, dark respiration rate, light compensation point, net saturated leaf assimilation rate (A sat), and in stomatal conductance (g s sat) when assimilation rate (A) was saturated. A light-demanding pioneer species (Macaranga hypoleuca) and a shade-demanding understorey species (Begonia sp.) had, respectively, higher and lower A sat and g s sat than the dipterocarp species. In high-light conditions A sat and g s sat were strongly positively correlated in dipterocarp species. Differing photosynthetic characteristics of gap-acclimated plants suggest that, in these dipterocarp species, different rates of carbon fixation may be an important factor contributing towards niche partitioning. Mean integrated diurnal A (A diurnal) in the gap, partial shade and understory were, respectively, 122.9, 52.7, 20.5 mmol m−2 day−1. Differences occurred in A diurnal of dipterocarp species between light environments. When Macaranga was included, differences in A diurnal were evident in the gap and partial shade, and in both cases were attributed to the pioneer. For the variable A diurnal, there was of a shift in the rank position of Macaranga among light environments, but a shift did not occur among the dipterocarp species. Results from this study are consistent with the idea that rates of carbon fixation per unit leaf area may contribute towards niche differentiation between the climax and single pioneer species, but not within the group of climax species. Other physiological and/or carbon allocation factors may be involved in any niche partitioning; dipterocarp species often have inherently different growth rates and susceptibility to herbivory. As an alternative to niche partitioning, dipterocarp species may co-exist in natural light environments as a result of habitat disequilibrium or purely stochastic processes. Received: 2 April 1997 / Accepted: 13 July 1997  相似文献   

10.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

11.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

12.
The physiological characteristics of growth and pentachlorophenol degradation of the bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1 were studied quantitatively in liquid culture under various conditions of pH, temperature, pO2, pCO2 and PCP concentration. Concerning their metabolic properties, RA2 and PCP-1 can be regarded as r-strategist and K-strategist, respectively. RA2 showed a higher activity concerning growth and PCP degradation than PCP-1 under optimum conditions. However, PCP-1 performed better under extreme conditions. Maximum growth rates or RA2 and PCP-1 on glucose were 0.21 h−1 and 0.024 h−1 and maximum PCP degradation rates 315 and 40 μmol (g of dry cells)−1 h−1, respectively. Optimized cultivation for RA2 on a technical scale led to the production of 40 g L−1 of cell dry mass within 55 h. The cultivation strategy including pH-controlled ammonium feeding can be used to effectively produce sufficient biomass of both strains for both research and application as inoculants in soil clean-up. Received 28 July 1998/ Accepted in revised form 30 November 1998  相似文献   

13.
Solute mobilities in cuticular membranes of six species (Hedera helix, Malus domestica, Populus alba, Pyrus communis, Stephanotis floribunda, Strophantus gratus) were measured using plant hormones, growth regulators and other organic model compounds varying in molar volumes from 99 to 349 mL · mol−1 The dependence of mobilities (k*) on molar volume (V x ) was exponential and could be described with equations of the type log k*=log k*0 V x . The y-intercepts (log k*0) represent mobilities of a hypothetical solute of zero molar volume. The parameter β′ is a measure of size selectivity of cuticular membranes and no differences among the six species were observed. At 25 °C the average β′ was 0.0095 mol · mL−1. Solute mobility decreased by about a factor of 8.9 when molar volume increased by 100 mL · mol−1 and the mobility of a compound with V x  = 100 mL · mol−1 was about 700-fold higher than the mobility of a compound with V x  = 400 mL · mol−1. Size selectivity decreased with increasing temperatures and for Strophantusβ′-values of 1.6 × 10−2 to 8.0 × 10-4 mol · mL−1 were obtained for 10 and 30 °C, respectively. The-intercepts (log k*0) differed among plant species by 3 orders of magnitude and since size selectivity was the same for all species, solute mobilities for solutes having zero molar volumes were the sole cause for differences among species in solute mobilities and permeabilities. We argue that these differences in k*0 are related to tortuosity of the diffusion path. These results were used to derive an equation which predicts rates of cuticular penetration on the basis of k*0, the average size selectivity of 9.5 × 10−3 mol · mL−1 and the driving forces of penetration. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

14.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

15.
Two tubular undulating row photobioreactors (TURPs) with a very high illuminated surface/volume ratio (400 m−1) were designed and constructed for the growth of photosynthetic micro-organisms. Experiments were conducted under outdoor conditions; and Arthrospira recycling was performed with airlifts (one for each row). The rows in each reactor faced east-west and consisted of a flexible polyvinyl chloride pipe (22 m long, 0.01 m bore) arranged in a sinusoidal shape. We studied the hydraulic performance of the sine-shaped photobioreactor rows during culture recycling in the TURPs at a very high Reynolds number (4200), when Arthrospira showed Newtonian fluid behavior. The sinusoidal pipe arrangement imposed a sine waveform on the culture, which led to better light utilization. During summer, a volumetric productivity of 2.2 g l−1 day−1 was reached in the TURP-5r (5 rows m−2), whereas an area productivity of 35 g m−2 day−1 was obtained in the TURP-10r (10 rows m−2). This was due to more light being available in the TURP-5r, because its rows were more spaced out and the photic ratio (R f) was low (3.0). In the TURP-10r, the closer rows caused a dilution of the sunlight, but gave a better light distribution inside the Arthrospira culture and improved the light utilization. This was attributed to the high R f (6.0) of this reactor. Received: 8 October 1999 / Received revision: 20 January 2000 / Accepted: 23 January 2000  相似文献   

16.
 Age and growth of a paralepidid, Lestrolepis japonica, were determined from sagittal otoliths of specimens collected from April 2001 to February 2002 in Kagoshima Bay, southern Japan. Marginal growth increments indicated that the annulus was formed once a year, in August and September. Four groups were recognized, having none, one, two, or three annuli, respectively. Age in months was assigned to each individual on the basis of August as the birth month. The maximum recorded age was 48 months. Growth was expressed by von Bertalanffy's equation, L t  = 171.91{1 − exp[−0.148(t + 0.403)]}, t being the age in months and L t the standard length (mm) at age t. Received: July 15, 2002 / Revised: November 18, 2002 / Accepted: December 10, 2002  相似文献   

17.
The role of gibberellins (GAs) in the regulation of shoot elongation is well established but the phytohormonal control of dry-matter production is poorly understood. In the present study, shoot elongation and dry-matter production were resolved by growing Brassica napus L. seedlings under five light intensities (photon flux densities) ranging from 25 to 500 μmol m−2 s−1. Under low light, plants were tall but produced little dry weight; as light intensity was increased, plants were progressively shorter but had increasing dry weights. Endogenous GAs in stems of 16- and 17-d-old plants were analyzed by gas chromatography-selected ion monitoring with [2H2] internal standards. The contents of GAs increased dramatically with decreasing light intensity: GA1, GA3, GA8 and GA20 were 62, 15, 16 and 32 times higher, respectively, under the lowest versus highest light intensities. Gibberellin A19 was not measured at 25 μmol m−2 s−1 but was 9␣times greater in the 75 compared to 500 μmol m−2 s−1 treatment. Shoot and hypocotyl lengths were closely positively correlated with (log) GA concentration (for example: r 2 = 0.93 for GA1 and hypocotyl length) but shoot dry matter was negatively correlated with GA concentration. The application of gibberellic acid (GA3) produced elongation of plants grown under high light, indication that their low level of endogenous GA was limiting shoot elongation. Although endogenous GA20 showed the greatest influence of light treatment, metabolism of [3H]GA20 and of [3H]GA1 was only slightly influenced by light intensity, suggesting that neither 2β- nor 3β-hydroxylation were points of metabolic regulation. The results of this study indicate that GAs control shoot elongation but are not directly involved in the regulation of shoot dry weight in Brassica. The study also suggests a role of GAs in photomorphogenesis, serving as an intermediate between light condition and shoot elongation response. Received: 18 June 1998 / Accepted: 29 July 1998  相似文献   

18.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   

19.
A novel method for the determination of microbial growth kinetics on hydrophobic volatile organic compounds (VOC) has been developed. A stirred tank reactor was operated as a fed-batch system to which the VOC was continuously fed via the gas phase, assuring a constant VOC concentration in the mineral medium. A flow of air was saturated with the VOC, and then mixed with a further flow of air, to obtain a predetermined VOC concentration. Thus, different VOC concentrations in the mineral medium could be obtained by altering the VOC concentration in the feed gas. The growth kinetics of Xanthobacter autotrophicus GJ10 on 1,2-dichloroethane (DCE) and of Pseudomonas sp. strain JS150 on MonoChloroBenzene (MCB) were assessed using this method. The growth of strain JS150 was strongly inhibited at MCB concentrations higher than 160 mg l−1, and the results were fitted using a piecewise function. The growth kinetics of strain GJ10 were described by the Luong model where maximum growth rate μmax = 0.12 h−1, substrate saturation constant K S = 7.8 mg l−1, and maximum substrate concentration S m (above which growth is completely inhibited) = 1080 mg l−1. Varying nitrogen and oxygen flows enabled the effect of oxygen concentration on the growth kinetics of Pseudomonas JS150 to be determined. Received: 30 November 1998 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

20.
Temperature requirements for growth, photosynthesis and dark respiration were determined for five Antarctic red algal species. After acclimation, the stenothermal species Gigartina skottsbergii and Ballia callitricha grew at 0 or up to 5 °C, respectively; the eurythermal species Kallymenia antarctica, Gymnogongrus antarcticus and Phyllophora ahnfeltioides grew up to 10 °C. The temperature optima of photosynthesis were between 10 and 15 °C in the stenothermal species and between 15 and 25 °C in the eurythermal species, irrespective of the growth temperature. This shows that the temperature optima for photosynthesis are located well below the optima from species of other biogeographical regions, even from the Arctic. Respiratory rates rose with increasing temperatures. In contrast to photosynthesis, no temperature optimum was evident between 0 and 25 °C. Partial acclimation of photosynthetic capacity to growth temperature was found in two species. B. callitricha and Gymnogongrus antarcticus acclimate to 0 °C, and 5 and 0 °C, respectively. But acclimation did in no case lead to an overall shift in the temperature optimum of photosynthesis. B. callitricha and Gymnogongrus antarcticus showed acclimation of respiration to 5 °C, and P. ahnfeltioides to 5 and 10 °C, resulting in a temperature independence of respiration when measured at growth temperature. With respect to the acclimation potential of the species, no distinction can be made between the stenothermal versus the eurythermal group. (Net)photosynthetic capacity:respiration (P:R) ratios showed in all species highest values at 0 °C and decreased continuously to values lower than 1.0 at 25 °C. In turn, the low P:R ratios at higher temperatures are assumed to determine the upper temperature growth limit of the studied species. Estimated daily carbon balance reached values between 4.1 and 30.7 mg C g−1 FW day−1 at 0 °C, 16:8 h light/dark cycle, 12–40 μmol m−2 s−1. Received: 4 November 1999 / Accepted: 7 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号