首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally thought that fragile X-associated tremor/ataxia syndrome (FXTAS) represents a late-onset neurodegenerative disorder occuring in male carriers of a premutation expansion (55-200 CGG repeats) in the fragile X mental retardation 1 (FMR 1) gene. However, several female patients with FXTAS have also been reported recently. Here, we describe a 23-year old woman with positive family history of mental retardation and autism who presented clinically with action tremor, ataxia, emotional disturbances and cognitive dysfunction. Magnetic resonance imaging (MRI) of the brain showed diffuse cortical atrophy, while 1H-MR spectroscopy (MRS) revealed decreased levels of N-acetylaspartate (NAA) in the cerebellum, basal ganglia, and pons. Genetic testing confirmed heterozygous FMR 1 gene premutation of 100 CGG repeats in the abnormal allele and 29 CGG repeats in the normal allele. We concluded that FXTAS may be an under-recognized disorder, particularly in women.  相似文献   

2.
3.
Sofola OA  Jin P  Qin Y  Duan R  Liu H  de Haro M  Nelson DL  Botas J 《Neuron》2007,55(4):565-571
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently described neurodegenerative disorder of older adult carriers of premutation alleles (60-200 CGG repeats) in the fragile X mental retardation gene (FMR1). It has been proposed that FXTAS is an RNA-mediated neurodegenerative disease caused by the titration of RNA-binding proteins by the CGG repeats. To test this hypothesis, we utilize a transgenic Drosophila model of FXTAS that expresses a premutation-length repeat (90 CGG repeats) from the 5' UTR of the human FMR1 gene and displays neuronal degeneration. Here, we show that overexpression of RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppresses the phenotype of the CGG transgenic fly. Furthermore, we show that hnRNP A2/B1 directly interacts with riboCGG repeats and that the CUGBP1 protein interacts with the riboCGG repeats via hnRNP A2/B1.  相似文献   

4.
Fragile X syndrome is a neurodevelopmental disorder that is not known to have any progressive neurological sequelae in adulthood. However, a neurological condition involving intention tremor, ataxia, and cognitive decline has recently been identified among older male carriers of premutation alleles of the FMR1 gene. This condition is clinically distinct from fragile X syndrome and arises through a different molecular mechanism involving the same gene (FMR1). Characteristic findings on magnetic resonance imaging include cerebral and cerebellar volume loss and altered signal intensities of the middle cerebellar peduncles. A striking feature of this fragile X-associated tremor/ataxia syndrome is the presence of ubiquitin-positive neuronal and astroglial intranuclear inclusions. Unlike the CAG repeat expansion diseases, which lead to altered protein products, there is no known protein abnormality among FMR1 premutation carriers. Thus, inclusion formation may reflect a gain-of-function effect of the FMR1 mRNA or the CGG repeat itself. Finally, since this syndrome may represent one of the more common single-gene causes of tremor, ataxia, and dementia among older males, FMR1 DNA testing should be considered when evaluating adult patients with tremor/ataxia.  相似文献   

5.
6.
Recent evidence suggests that early changes in postural control may be discernible among females with premutation expansions (55–200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene at risk of developing fragile X‐associated tremor ataxia syndrome (FXTAS). Cerebellar dysfunction is well described in males and females with FXTAS, yet the interrelationships between cerebellar volume, CGG repeat length, FMR1 messenger RNA (mRNA) levels and changes in postural control remain unknown. This study examined postural sway during standing in a cohort of 22 males with the FMR1 premutation (ages 26–80) and 24 matched controls (ages 26–77). The influence of cerebellar volume, CGG repeat length and FMR1 mRNA levels on postural sway was explored using multiple linear regression. The results provide preliminary evidence that increasing CGG repeat length and decreasing cerebellar volume were associated with greater postural sway among premutation males. The relationship between CGG repeat length and postural sway was mediated by a negative association between CGG repeat size and cerebellar volume. While FMR1 mRNA levels were significantly elevated in the premutation group and correlated with CGG repeat length, FMR1 mRNA levels were not significantly associated with postural sway scores. These findings show for the first time that greater postural sway among males with the FMR1 premutation may reflect CGG repeat‐mediated disruption in vulnerable cerebellar circuits implicated in postural control. However, longitudinal studies in larger samples are required to confirm whether the relationships between cerebellar volume, CGG repeat length and postural sway indicate greater risk for neurological decline.  相似文献   

7.
8.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

9.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder caused by an expansion of 55-200 CGG repeats at 5UTR of FMR1 gene, known as premutation. The main clinical and neuropathological features of FXTAS include progressive intention tremor, gait ataxia, neuronal cell loss and presence of ubiquitin-positive intranuclear inclusions in neurons and astrocytes. Various mitochondrial dysfunctions are reported in in vitro/vivo models of FXTAS; however, the molecular mechanisms underlying such mitochondrial dysfunctions are unclear. CGG expansions are pathogenic through distinct mechanisms involving RNA gain of function, impaired DNA damage repair and FMRpolyG toxicity. Here, we have systematically reviewed the reports of mitochondrial dysfunctions under premutation condition. We have also focused on potential emerging mechanisms to understand mitochondrial associated pathology in FXTAS. This review highlights the important role of mitochondria in FXTAS and other related disorders; and suggests focus of future studies on mitochondrial dysfunction along with other prevailing mechanisms to alleviate neurodegeneration.  相似文献   

10.
The FMR1 gene is involved in three different syndromes, the fragile X syndrome (FXS), premature ovarian insufficiency (POI) and the fragile X-associated tremor/ataxia syndrome (FXTAS) at older age. Fragile X syndrome is caused by an expansion of a CGG repeat above 200 units in the FMR1 gene resulting in the absence of the FMR1 mRNA and protein. The FMR1 protein is proposed to act as a regulator of mRNA transport and of translation of target mRNAs at the synapse. FXS is seen as a loss of function disorder. POI and FXTAS are found in individuals with an expanded repeat between 50 and 200 CGGs and are associated with increased FMR1 mRNA levels. The presence of elevated FMR1 mRNA in FXTAS suggests that FXTAS may represent a toxic RNA gain-of-function effect. The molecular basis of POI is yet unknown. The role of the FMR1 gene in these disorders is discussed.  相似文献   

11.
Premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 gene (FMR1) are known to contribute to the fragile X phenotype through genetic instability and transmission of full mutation alleles (>200 repeats). There is now mounting evidence that the premutation alleles themselves contribute to clinical involvement, including premature ovarian failure among female carriers and a new tremor/ataxia syndrome among older male carriers. Recent observations also provide direct evidence of dysregulation of the FMR1 gene in the premutation range, which may explain many of the clinical observations.  相似文献   

12.
Fragile X‐associated tremor/ataxia syndrome (FXTAS) is a late‐onset neurodegenerative disorder associated with FMR1 gene premutation alleles (55–200 CGG repeats). Fragile X‐associated tremor/ataxia syndrome clinical core features include action tremor, gait ataxia, cognitive deficits progressing to dementia, and frequently parkinsonism. Although the pathogenic molecular mechanism of FXTAS is not completely understood, the restriction of the phenotype to the FMR1 premutation range has given rise to a model based on a RNA toxic gain‐of‐function. Since the identification of the first microRNAs (miRNAs) and their role in normal development, several studies have associated them with neurodegenerative diseases such as Parkinson, Alzheimer and Huntington diseases, suggesting that they play a key role in brain development, as well as in its morphogenesis. Herein, we present the characterization of miRNA expression profiles in FXTAS male patients using deep sequencing‐based technologies and microarray technology. Deep sequencing analysis evidenced 83 miRNAs that were significantly deregulated whereas microarray analysis showed 31. When comparing these results, 14 miRNAs were found deregulated in FXTAS patients. MiR‐424 and miR‐574‐3p showed significant fold change adjusted P‐values in both platforms in FXTAS patients. MiR‐424 has been founded substantially and specifically enriched in human cerebral cortical white matter of Alzheimer disease patients, which, together with cerebral atrophy, is a prominent imaging finding in individuals with FXTAS. The study provides the first systematic evidence of differential miRNA expression changes in FXTAS blood samples. Although further studies are necessary to better characterize the miRNA function in FXTAS disorder, our results suggest that they might contribute to its pathogenesis.  相似文献   

13.
14.
Fragile X‐associated tremor/ataxia syndrome (FXTAS) is a late‐onset neurodegenerative disorder that appears in at least one‐third of adult carriers of a premutation (55‐200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene. Several studies have shown that mitochondrial dysfunction may play a central role in aging and also in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease as well as in FXTAS. It has been recently proposed that mtDNA copy number, measured by the number of mitochondrial genomes per nuclear genome (diploid), could be a useful biomarker of mitochondrial dysfunction. In order to elucidate the role of mtDNA variation in the pathogenesis of FXTAS, mtDNA copy number was quantified by digital droplet Polymerase chain reaction. In human brain samples, mtDNA levels were measured in the cerebellar vermis, dentate nucleus, parietal and temporal cortex, thalamus, caudate nucleus and hippocampus from a female FXTAS patient, a FMR1 premutation male carrier without FXTAS and from three male controls. The mtDNA copy number was further analyzed using this technology in dermal fibroblasts primary cultures derived from three FXTAS patients and three controls as well as in cortex and cerebellum of a CGG knock in FXTAS mice model. Finally, qPCR was carried out in human blood samples. Results indicate reduced mtDNA copy number in the specific brain region associated with disease progression in FXTAS patients, providing new insights into the role of mitochondrial dysfunction in the pathogenesis of FXTAS.  相似文献   

15.
The fragile-X premutation: a maturing perspective   总被引:16,自引:0,他引:16       下载免费PDF全文
Carriers of premutation alleles (55-200 CGG repeats) of the fragile-X mental retardation 1 (FMR1) gene are often regarded as being clinically uninvolved. However, it is now apparent that such individuals can present with one (or more) of three distinct clinical disorders: mild cognitive and/or behavioral deficits on the fragile-X spectrum; premature ovarian failure; and a newly described, neurodegenerative disorder of older adult carriers, fragile-X-associated tremor/ataxia syndrome (FXTAS). Awareness of these clinical presentations is important for proper diagnosis and therapeutic intervention, not only among families with known cases of fragile-X syndrome but also more broadly for adults with tremor, gait ataxia, and parkinsonism who are seen in movement-disorders clinics.  相似文献   

16.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a cytosine–guanine–guanine repeat expansion neurological disease that occurs in a subset of aging carriers of the premutation (55–200 cytosine–guanine–guanine repeats) in the FMR1 gene located on the X chromosome. The clinical core involves intention tremor and gait ataxia. Current research seeks to clarify the pathophysiology and neuropathology of FXTAS, as well as the development of useful biomarkers to track the progression of FXTAS. Efforts to implement quantitative measures of clinical features, such as kinematics and cognitive measures, are of special interest, in addition to characterize the differences in progression in males compared with females and the efficacy of new treatments.  相似文献   

17.
Jin P  Duan R  Qurashi A  Qin Y  Tian D  Rosser TC  Liu H  Feng Y  Warren ST 《Neuron》2007,55(4):556-564
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a recently recognized neurodegenerative disorder in fragile X premutation carriers with FMR1 alleles containing 55-200 CGG repeats. Previously, we developed a Drosophila model of FXTAS and demonstrated that transcribed premutation repeats alone are sufficient to cause neurodegeneration, suggesting that rCGG-repeat-binding proteins (RBPs) may be sequestered from their normal function by rCGG binding. Here, we identify Pur alpha and hnRNP A2/B1 as RBPs. We show that Pur alpha and rCGG repeats interact in a sequence-specific fashion that is conserved between mammals and Drosophila. Overexpression of Pur alpha in Drosophila could suppress rCGG-mediated neurodegeneration in a dose-dependent manner. Furthermore, Pur alpha is also present in the inclusions of FXTAS patient brains. These findings support the disease mechanism of FXTAS of rCGG repeat sequestration of specific RBPs, leading to neuronal cell death, and implicate that Pur alpha plays an important role in the pathogenesis of FXTAS.  相似文献   

18.
A late onset neurological syndrome in carriers of premutation in FMR1 gene was recently described. The condition was named fragile-X-associated tremor/ataxia syndrome (FXTAS) and includes intentional tremor, cerebellar ataxia, parkinsonism, and cognitive deficit. We ascertained the contribution of FMR1 premutation to the phenotypes ataxia, tremor and/or parkinsonism. Sixty-six men over 45 years old presenting these symptoms, isolated or combined, were tested. Also, 74 normal men, randomly chosen in the population, formed the control group. In the patient group, no premutation carrier was found, which is in agreement with other observed frequencies reported elsewhere (0-5% variation). No significant differences were found when comparing gray zone allele frequencies among target and control groups. The FXTAS contribution in patients with phenotypic manifestations of FXTAS was 15/748 (2%). The presence of gray zone alleles is not correlated with FXTAS occurrence.  相似文献   

19.
20.
The CGG repeats are present in the 5'-untranslated region (5'-UTR) of the fragile X mental retardation gene FMR1 and are associated with two diseases: fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X syndrome (FXS). FXTAS occurs when the number of repeats is 55-200 and FXS develops when the number exceeds 200. FXTAS is an RNA-mediated disease in which the expanded CGG tracts form stable structures and sequester important RNA binding proteins. We obtained and analysed three crystal structures of double-helical CGG repeats involving unmodified and 8-Br modified guanosine residues. Despite the presence of the non-canonical base pairs, the helices retain an A-form. In the G-G pairs one guanosine is always in the syn conformation, the other is anti. There are two hydrogen bonds between the Watson-Crick edge of G(anti) and the Hoogsteen edge of G(syn): O6·N1H and N7·N2H. The G(syn)-G(anti) pair shows affinity for binding ions in the major groove. G(syn) causes local unwinding of the helix, compensated elsewhere along the duplex. CGG helical structures appear relatively stable compared with CAG and CUG tracts. This could be an important factor in the RNA's ligand binding affinity and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号