首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have developed a technique to precisely isolate and process murine gingival tissue for flow cytometry and molecular studies. The gingiva is a unique and important tissue to study immune mechanisms because it is involved in host immune response against oral biofilm that might cause periodontal diseases. Furthermore, the close proximity of the gingiva to alveolar bone tissue enables also studying bone remodeling under inflammatory conditions. Our method yields large amount of immune cells that allows analysis of even rare cell populations such as Langerhans cells and T regulatory cells as we demonstrated previously 1. Employing mice to study local immune responses involved in alveolar bone loss during periodontal diseases is advantageous because of the availability of various immunological and experimental tools. Nevertheless, due to their small size and the relatively inconvenient access to the murine gingiva, many studies avoided examination of this critical tissue. The method described in this work could facilitate gingival analysis, which hopefully will increase our understating on the oral immune system and its role during periodontal diseases.  相似文献   

3.
Accumulating evidence during the last two decades has addressed the potential anti-inflammatory properties of berberine (BBR), a bioactive alkaloid compound isolated from Coptidis rhizoma, in controlling or treating several inflammatory diseases. Periodontitis is one of the most common chronic and serious inflammatory diseases, in which uncontrolled and unabated host immune responses against periodontopathic pathogens play critical and crucial roles in the disease pathogenesis. Hence, regulating inflammatory responses in periodontitis has a valuable approach and holds promise in treating periodontitis. For the first time, this paper reviews the evidence from in vitro and in vivo experimental models to explore the anti-inflammatory effects of BBR in periodontitis and exhibits that BBR has the high potency to exert anti-inflammatory effects by reducing expression and secretion of pro-inflammatory mediators including TNF-α, IL-1β, IL-17, RANKL, MMP-2, MMP-9 and MCP-1. The BBR-mediated anti-inflammatory actions could translate into the inhibition of the periodontal tissues and alveolar bone destruction and the control of the disease in vivo. As the second aim of this paper, we also paid attention to the therapeutic potential of BBR in treating human diseases regarding its anti-inflammatory properties.  相似文献   

4.
Aquaporin 3 (AQP3) is the predominant water channel protein in human keratinocytes and acts as an inflammatory mediator in some lesions. A chronic, inflammatory process of periodontitis is related with a dramatic change of surrounding fluid homeostasis to plasma extravasation. The exact pattern of aquaporin (AQP) water channel expression and its mechanism in periodontal disease is still unknown. We describe herein an up-regulated AQP3 expression in the epithelial lesion with chronic periodontitis and its functional role. The levels of AQP3 expression in inflamed gingival epithelial tissues were significantly higher than those of healthy subjects. Consistent with these results, AQP3 expression (i.e., levels of mRNA and protein) in cultured rat primary gingival epithelial cells and the human gingival epithelial cell line Ca9-22 were strongly increased in response to TNF-alpha treatment through the 55 kDa TNF-alpha receptor (TNFR I). In this context, small interfering RNA- (siRNA)-mediated "aqp-3 gene silencing," which could reduce AQP3 expression by more than 65%, significantly attenuated selected proinflammatory events of ICAM-1 expression induced by TNF-alpha in Ca9-22. A sixfold increase in leukocyte adherence to TNF-alpha-stimulated epithelial cells was demonstrated by an adherence assay (P < 0.001) and pretreatment with AQP3 siRNA and anti-ICAM-1 antibody reduced leukocyte retention by 85% (P < 0.001). Our study indicates for the first time a novel important mode in the regulation of the inflammatory response through TNF-alpha/TNFR I ligation at the site of epithelial lesions by specialized membrane channel AQP3 and ICAM-1 protein, which is closely implicated in the development of periodontitis mechanisms.  相似文献   

5.
Immunological responses to invading bacteria play a major role in the course of inflammatory periodontal diseases, such as CP. It was suggested that one of the major elements in determining the course of the disease is the expression of cellular adhesion molecules. We therefore investigated the expression of cellular adhesion molecules, ICAM-1 and beta-1 integrins, capillary density and lymphocyte subpopulations in gingival biopsies obtained from 20 patients with CP who responded and 21 patient who failed to respond to initial treatment using immunohistochemical methods. We found no differences between the two groups in capillary density, ICAM-1 and beta-1 integrin expression. Patients who responded to treatment had a lymphocytic inflammatory infiltrate consisting predominantly of T cells, while those who failed to respond had an approximately equal number of T and B cells. Our findings support the role of host immunological mechanisms in determining the outcome of CP and argue against a major role of differential cellular adhesion molecule expression.  相似文献   

6.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

7.
Periodontal diseases are inflammatory diseases of supporting structures of the tooth. It results in the destruction of the supporting structures and most of the destructive processes involved are host derived. The processes leading to destruction and regeneration of the destroyed tissues are of great interest to both researchers and clinicians. The selective susceptibility of subjects for periodontitis has remained an enigma and wide varieties of risk factors have been implicated for the manifestation and progression of periodontitis. Genetic factors have been a new addition to the list of risk factors for periodontal diseases. With the availability of human genome sequence and the knowledge of the complement of the genes, it should be possible to identify the metabolic pathways involved in periodontal destruction and regeneration. Most forms of periodontitis represent a life-long account of interactions between the genome, behaviour, and environment. The current practical utility of genetic knowledge in periodontitis is limited. The information contained within the human genome can potentially lead to a better understanding of the control mechanisms modulating the production of inflammatory mediators as well as provides potential therapeutic targets for periodontal disease. Allelic variants at multiple gene loci probably influence periodontitis susceptibility.  相似文献   

8.
摘要 目的:探讨浓缩自体生长因子联合牙周组织再生术对重度牙周炎患者疗效,牙龈厚度和免疫因子水平影响。方法:选取我院2019年6月至2020年6月收治的58例重度牙周炎患者,分为对照组和观察组,各29例。对照组接受牙周组织再生术;观察组接受牙周组织再生术联合浓缩自体生长因子治疗。分别在治疗前、治疗9个月后复诊,对比两组患者临床疗效,治疗前后牙龈厚度、视觉模拟量表(VAS)评分,治疗前后龈沟液及血清白细胞介素-17(IL-17)、白细胞介素-23(interleukin-17,IL-23)、白细胞介素-17(IL-23)表达水平。结果:与对照组相比,观察组总有效率高(P<0.05);治疗前,两组患者牙龈厚度、VAS评分对比无差异(P>0.05),治疗后两组患者牙龈厚度增加,观察组高于对照组,VAS评分降低,观察组低于对照组(P<0.05);治疗前,两组患者龈沟液IL-17、IL-23、IL-10对比无差异(P>0.05),治疗后,两组患者龈沟液因子表达有差异,观察组较对照组有差异(P<0.05);治疗前,两组患者血清IL-17、IL-23、IL-10对比无差异(P>0.05),治疗后,两组患者血清因子表达有差异,观察组较对照组有差异(P<0.05)。结论:浓缩自体生长因子联合牙周组织再生术可对重度牙周炎治疗效果显著,可增加患者牙龈厚度,减轻疼痛程度,改善龈沟液及血清中免疫因子水平,减轻炎症反应,值得临床应用推广。  相似文献   

9.
Periodontal diseases are localized chronic inflammatory conditions of the gingival and underlying bone and connective tissue. Platelet-activating factor (PAF), a potent inflammatory phospholipid mediator that has been previously detected in elevated levels in inflamed gingival tissues, in gingival crevicular fluid and in saliva, is implicated in periodontal disease. Our results from previous studies showed that the biologically active phospholipid detected in gingival crevicular fluid is a hydroxyl-PAF analogue. In this study, hydroxyl-PAF analogue was detected for the first time in human blood derived from patients with chronic periodontitis as well as from periodontally healthy volunteers. The hydroxyl-PAF analogue was purified by high-performance liquid chromatography, detected by biological assays and identified by electrospray analysis. In addition, the quantitative determination of PAF and hydroxyl-PAF analogue (expressed as PAF-like activity) showed a statistically significant increase in the ratio of hydroxyl-PAF analogue levels to PAF levels in periodontal patients, suggesting that this bioactive lipid may play a role in oral inflammation.  相似文献   

10.
Periodontal disease (Periodontitis) is a serious disease that affects a majority of adult Americans and is associated with other systemic diseases, including diabetes, rheumatoid arthritis, and other inflammatory diseases. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this pervasive and destructive disease. In this study, we utilized novel adeno-associated virus (AAV)-mediated Atp6v1c1 knockdown gene therapy to treat bone erosion and inflammatory caused by periodontitis in mouse model. Atp6v1c1 is a subunit of the V-ATPase complex and regulator of the assembly of the V0 and V1 domains of the V-ATPase complex. We demonstrated previously that Atp6v1c1 has an essential function in osteoclast mediated bone resorption. We hypothesized that Atp6v1c1 may be an ideal target to prevent the bone erosion and inflammation caused by periodontitis. To test the hypothesis, we employed AAV RNAi knockdown of Atp6v1c1 gene expression to prevent bone erosion and gingival inflammation simultaneously. We found that lesion-specific injection of AAV-shRNA-Atp6v1c1 into the periodontal disease lesions protected against bone erosion (>85%) and gingival inflammation caused by P. gingivalis W50 infection. AAV-mediated Atp6v1c1 knockdown dramatically reduced osteoclast numbers and inhibited the infiltration of dendritic cells and macrophages in the bacteria-induced inflammatory lesions in periodontitis. Silencing of Atp6v1c1 expression also prevented the expressions of osteoclast-related genes and pro-inflammatory cytokine genes. Our data suggests that AAV-shRNA-Atp6v1c1 treatment can significantly attenuate the bone erosion and inflammation caused by periodontitis, indicating the dual function of AAV-shRNA-Atp6v1c1 as an inhibitor of bone erosion mediated by osteoclasts, and as an inhibitor of inflammation through down-regulation of pro-inflammatory cytokine expression. This study demonstrated that Atp6v1c1 RNAi knockdown gene therapy mediated by AAV-shRNA-Atp6v1c1 is a promising novel therapeutic approach for the treatment of bone erosion and inflammatory related diseases, such as periodontitis and rheumatoid arthritis.  相似文献   

11.
Cystein proteinases (gingipains) from Porphyromonas gingivalis cleave a broad range of in-host proteins and are considered to be key virulence factors in the onset and development of adult periodontitis and host defense evasion. In periodontitis, an inflammatory disease triggered by bacterial infection, the production of hepatocyte growth factor (HGF) is induced not only by various factors derived from the host, such as inflammatory cytokines, but also by bacterial components. In this study we examined the possible enhanced production of HGF produced by human gingival fibroblasts upon stimulation with gingipains. Arginine-specific gingipain (Rgp) caused a marked production of HGF into the supernatant, the induction of HGF expression on the cell surface, and the up-regulation of HGF mRNA expression in a dose-dependent and an enzymatic activity-dependent manner. Because it has been reported that Rgp activated protease-activated receptors (PARs), we examined whether the induction of HGF triggered by Rgps on human gingival fibroblasts occurred through PARs. An RNA interference assay targeted to PAR-1 and PAR-2 mRNA revealed that gingipains-induced secretion of HGF was significantly inhibited by RNA interference targeted to PAR-1 and PAR-2. In addition, the Rgps-mediated HGF induction was completely inhibited by the inhibition of phospholipase C and was clearly inhibited by RNA interference targeted to p65, which is an NF-kappaB component. These results suggest that Rgps activated human gingival fibroblasts to secrete HGF in the inflamed sites and the mechanism(s) involved may actively participate in both inflammatory and reparative processes in periodontal diseases.  相似文献   

12.
Summary A major factor in cellular cytotoxicity is the interaction between LFA-1 on leukocytes and ICAM-1 on targets. Because several inflammatory cartilage diseases are characterized by the presence of leukocyte infiltrates, the expression of ICAM-1 on human cartilage, cultured chondrocytes, and transplanted cartilage was investigated using monoclonal antibodies. Frozen tissue sections, chondrocytes in suspension, as well as total cellular mRNA were prepared from human cartilage samples. ICAM-1 expression was studied with two different monoclonal antibodies directed against ICAM-1 by immunohistochemical APAAP-staining and additional flow cytometric analyses. The expression of ICAM-1-mRNA in cartilage tissue was analyzed using the northern blot hybridization technique. Furthermore, chondrocytes were treated in culture with interleukin-1 (IL-1) and gamma-interferon (gamma-IFN). ICAM-1 expression after culture was quantified using flow cytometric analysis. We could detect ICAM-1 mRNA in cartilage tissue, however, the immunostaining of tissue sections using monoclonal antibodies did not give clear positive reactions. Isolated chondrocytes showed strongly positive staining patterns in comparison with adequate negative controls as assessed by flow cytometry. A dose-dependent increase of the expression of ICAM-1 on chondrocytes was observed when stimulated with IL-1 and gamma-IFN. Finally, two of the three studied transplanted autologous cartilage samples with advanced resorption showed the presence of ICAM-1 molecules as assessed by immunohistochemistry. This expression of ICAM-1 suggests that the molecule plays a role in severe cartilage inflammatory processes, where tissue damage leads to the exposure of chondrocyte surfaces.  相似文献   

13.
Periodontitis is a chronic inflammatory disease of tooth supporting tissues resulting in periodontal tissue destruction, which may ultimately lead to tooth loss. The disease is characterized by continuous leukocyte infiltration, likely mediated by local chemokine production but the pathogenic mechanisms are not fully elucidated. There are no reliable serologic biomarkers for the diagnosis of periodontitis, which is today based solely on the degree of local tissue destruction, and there is no available biological treatment tool. Prompted by the increasing interest in periodontitis and systemic inflammatory mediators we mapped serum cytokine and chemokine levels from periodontitis subjects and healthy controls. We used multivariate partial least squares (PLS) modeling and identified monocyte chemoattractant protein-1 (MCP-1) and eotaxin as clearly associated with periodontitis along with C-reactive protein (CRP), years of smoking and age, whereas the number of remaining teeth was associated with being healthy. Moreover, body mass index correlated significantly with serum MCP-1 and CRP, but not with eotaxin. We detected higher MCP-1 protein levels in inflamed gingival connective tissue compared to healthy but the eotaxin levels were undetectable. Primary human gingival fibroblasts displayed strongly increased expression of MCP-1 and eotaxin mRNA and protein when challenged with tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β), key mediators of periodontal inflammation. We also demonstrated that the upregulated chemokine expression was dependent on the NF-κΒ pathway. In summary, we identify higher levels of CRP, eotaxin and MCP-1 in serum of periodontitis patients. This, together with our finding that both CRP and MCP-1 correlates with BMI points towards an increased systemic inflammatory load in patients with periodontitis and high BMI. Targeting eotaxin and MCP-1 in periodontitis may result in reduced leukocyte infiltration and inflammation in periodontitis and maybe prevent tooth loss.  相似文献   

14.
Extravasated fluid, proteins and cells are returned into the circulation by lymphatic vessels that are also important in immune cell trafficking. Lymphatic vessels in gingiva are located in lamina propria, and traverse the external surface of the alveolar bone. Lack of gingival lymphatics has been shown to increase the interstitial fluid pressure and fluid volume, thus showing that lymphatics are important for fluid drainage also in this tissue. Gingival lymphatic vessels require continuous signaling by the growth factors VEGF-C and D via their receptor VEGFR-3 for their maintenance, factors that are expressed in the gingival epithelium and also in immune cells in lamina propria. VEGF-C seems to be of critical importance for lymphangiogeneses induced during periodontal disease development. Mice are protected against periodontitis by lymphatics clearing bacteria and bacterial products and promoting humoral immune responses. CCL21, a ligand important for dendritic cell migration, has been found to be downregulated in lymphatics from patients with periodontitis. Such patients may have impaired gingival lymphatic function due to high enzymatic activity and thus loss of structural components in the interstitium. At present there are few studies on the role of lymphatic vessels in periodontal disease making this a rather unexplored field.  相似文献   

15.
Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1) in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS). TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR) 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.  相似文献   

16.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

17.
Oral treponemes are members of the spirochete family of bacteria associated with periodontal diseases. In the present study, we demonstrate that intercellular adhesion molecule-1 (ICAM-1) on human gingival epithelial cells (HGEC) contributed to the invasion of Treponema medium, a medium-sized oral Treponema, into those cells. The quantity of T. medium in HGEC was found to peak at 2 h after inoculation and then decreased gradually. Immunofluorescence microscopy findings showed that the bacteria were colocalized with ICAM-1 on HGEC. Furthermore, knockdown of ICAM-1 in HGEC resulted in inhibition of T. medium invasion by RNA interference, whereas that of Toll-like receptor 2 did not. These results suggest that ICAM-1 may be required for the invasion of T. medium into HGEC, and they indicate that the molecule plays a principal role in the primary stages of the development and progression of chronic periodontitis.  相似文献   

18.
Periodontitis is a widespread chronic infectious-inflammatory disease associated with multiple systemic diseases. Visfatin is an adipokine-enzyme that can be locally produced by human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). It can upregulate proinflammatory cytokines and matrix metalloproteinases (MMPs) in various types of cells. However, the effects of visfatin on healthy and inflammatory human periodontal cells as well as the underlying molecular mechanisms remain unclear. This study firstly demonstrated visfatin expression was highly elevated in inflamed human gingiva and Pg LPS-treated hPDLCs. Moreover, recombinant visfatin significantly upregulated the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) and prodegradative factors (EMPPRIN, MMP1, MMP3 and MMP13) in hPDLCs. Next, we found the levels of proinflammatory and prodegradative cytokines were significantly increased in visfatin-overexpressing hPDLCs, and decreased in visfatin-silencing inflammatory hGFs (iGFs) when treated with Pg LPS. In the absence of Pg LPS, visfatin silencing failed to affect the expression of these factors in iGFs, and overexpression of visfatin upregulated MMPs but no other factors in hPDLCs. Furthermore, marked NF-κB pathway activation with increased phosphorylation of p65 was observed in visfatin-overexpressing hPDLCs. BAY11-7082, a specific inhibitor of NF-κB, partially reversed the upregulation proinflammatory and prodegradative factors induced by visfatin overexpression. Taken together, this study showed that visfatin critically regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. The findings suggest that visfatin is closely involved in the development of periodontitis, and may serve as a promising novel biomarker and therapeutic target for periodontitis management.  相似文献   

19.
Y J Lo  C M Liu  M Y Wong  L T Hou  W K Chang 《Cytokine》1999,11(8):626-633
Interleukin 1beta (IL-1beta) is a cytokine with a wide range of biological activities. It is produced by various cell types including macrophages, fibroblasts, and neutrophils. The inflammatory responses mediated by IL-1beta play an important role in periodontal tissue destruction. The purposes of this study were: (1) to determine the location of IL-1beta in inflamed human gingival tissues by the immunofluorescence method; and (2) to correlate this location to the concomitant presence of macrophage or neutrophils by immunohistochemistry. Five patients with moderate to advanced adult periodontitis receiving periodontal phase I therapy were included in this study. One month after phase I therapy, 15 sites with a probing pocket depth >/=5 mm and gingivitis index >/=1 were arranged for modified Widman flap operation. Another three sites with a probing pocket depth 相似文献   

20.
S100A2 level changes are related to human periodontitis   总被引:1,自引:0,他引:1  
Periodontitis is an inflammatory disease, which, when severe, can result in tooth loss, that affects the quality of life. S100A2 was previously identified as a component of gingival crevicular fluid (GCF) via proteome analysis, but it has not been investigated whether S100A2 plays a role in periodontitis. In this study, we analyzed mRNA expression of S100A2 in gingival tissues from normal and classified periodontal disease patients and compared it to that of S100A8 and S100A9. Quantitative real time-PCR revealed that the mRNA expression levels of S100A2, S100A8, and S100A9 were significantly upregulated in gingival tissues with gingivitis, moderate periodontitis, and severe periodontitis compared to normal tissues. In addition, S100A2 proteins in GCF and the conditioned media of lipopolysaccharide (LPS)-treated Jurkat cells were confirmed by ELISA. S100A2 protein levels were significantly higher in GCF in gingivitis and moderate periodontitis groups than in normal groups. S100A2 mRNA expression and protein secretion were also increased by LPS stimulation. Based on the up-regulation of S100A2 in LPS-stimulated immune cells, gingival tissues and GCF from periodontal disease groups, we conclude that S100A2 is a functional component in the immune response during periodontitis and may serve as a potential biomarker for periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号