首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper maintenance of telomere length and structure is necessary for normal proliferation of mammalian cells. Mammalian telomere length is regulated by a number of proteins including human repressor activator protein (hRap1), a known association factor of TRF2. To further delineate hRap1 function and its associated proteins, we affinity-purified and identified the hRap1 protein complex through mass spectrometry analysis. In addition to TRF2, we found DNA repair proteins Rad50, Mre11, PARP1 (poly(ADP-ribose) polymerase), and Ku86/Ku70 to be in this telomeric complex. We demonstrated by deletional analysis that Rad-50/Mre-11 and Ku86 were recruited to hRap1 independent of TRF2. PARP1, however, most likely interacted with hRap1 through TRF2. Interestingly, knockdown of endogenous hRap1 expression by small hairpin interference RNA resulted in longer telomeres. In addition, overexpression of full-length and mutant hRap1 that lacked the BRCA1 C-terminal domain functioned as dominant negatives and extended telomeres. Deletion of a novel linker domain of hRap1 (residues 199-223), however, abolished the dominant negative effect of hRap1 overexpression. These results indicate that hRap1 negatively regulates telomere length in vivo and suggest that the linker region of hRap1 may modulate the recruitment of negative regulators of telomere length.  相似文献   

2.
The conserved Rap1 protein is part of the shelterin complex that plays critical roles in chromosome end protection and telomere length regulation. Previous studies have addressed how fission yeast Rap1 contributes to telomere length maintenance, but the mechanism by which the protein inhibits end fusions has remained elusive. Here, we use a mutagenesis screen in combination with high‐throughput sequencing to identify several amino acid positions in Rap1 that have key roles in end protection. Interestingly, mutations at these sites render cells susceptible to genome instability in a conditional manner, whereby longer telomeres are prone to undergoing end fusions, while telomeres within the normal length range are sufficiently protected. The protection of long telomeres is in part dependent on their nuclear envelope attachment mediated by the Rap1–Bqt4 interaction. Our data demonstrate that long telomeres represent a challenge for the maintenance of genome integrity, thereby providing an explanation for species‐specific upper limits on telomere length.  相似文献   

3.
In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.  相似文献   

4.
Telomere protection and maintenance are accomplished through the coordinated actions of telomere-specific DNA binding proteins and their interacting partners. The fission yeast ortholog of human TRF1/2, Taz1, binds telomeric DNA and regulates numerous aspects of telomere function. Here, we ask which aspects of Taz1 function are mediated through its interacting proteins, Rap1 and Rif1. We demonstrate that rap1+ deletion phenocopies some, but not all, aspects of taz1Delta telomere dysfunction, while Rif1 exhibits a very different functional spectrum. Rap1 acts in a Taz1-dependent pathway to prevent chromosome end fusions and regulate telomeric 3' overhang formation, while Rif1 is dispensable for these functions. Telomerase inhibition by Taz1 is mediated by two separate pathways, one involving Rap1 and the other involving Rif1. In contrast, Taz1 is uniquely required to prevent chromosomal entanglements and missegregation at cold temperatures. Strikingly, while rap1+ deletion exacerbates the cold sensitivity of taz1Delta cells, rif1+ deletion restores full viability. Thus, Rap1 and Rif1 are each required for a subset of the functions of Taz1, but each acquires Taz1-independent functions in its absence. Furthermore, Taz1 can function independently of its known binding partners.  相似文献   

5.
The number of telomeric DNA repeats at chromosome ends is maintained around a mean value by a dynamic balance between elongation and shortening. In particular, proteins binding along the duplex part of telomeric DNA set the number of repeats by progressively limiting telomere growth. The paradigm of this counting mechanism is the Rap1 protein in Saccharomyces cerevisiae. We demonstrate here that a Rap1-independent mechanism regulates the number of yeast telomeric repeats (TG(1-3)) and of vertebrate repeats (T(2)AG(3)) when TEL1, a yeast ortholog of the human gene encoding the ATM kinase, is inactivated. In addition, we show that a T(2)AG(3)-only telomere can be formed and maintained in humanized yeast cells carrying a template mutation of the gene encoding the telomerase RNA, which leads to the synthesis of vertebrate instead of yeast repeats. Genetic and biochemical evidences indicate that this telomere is regulated in a Rap1-independent manner, both in TEL1 and in tel1Delta humanized yeast cells. Altogether, these findings shed light on multiple repeat-counting mechanisms, which may share critical features between lower and higher eukaryotes.  相似文献   

6.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

7.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

8.
Rap1, a small GTPase of the Ras family, is ubiquitously expressed and particularly abundant in platelets. Previously we have shown that Rap1 is rapidly activated after stimulation of human platelets with alpha-thrombin. For this activation, a phospholipase C-mediated increase in intracellular calcium is necessary and sufficient. Here we show that thrombin induces a second phase of Rap1 activation, which is mediated by protein kinase C (PKC). Indeed, the PKC activator phorbol 12-myristate 13-acetate induced Rap1 activation, whereas the PKC-inhibitor bisindolylmaleimide inhibited the second, but not the first, phase of Rap1 activation. Activation of the integrin alpha(IIb)beta(3), a downstream target of PKC, with monoclonal antibody LIBS-6 also induced Rap1 activation. However, studies with alpha(IIb)beta(3)-deficient platelets from patients with Glanzmann's thrombasthenia type 1 show that alpha(IIb)beta(3) is not essential for Rap1 activation. Interestingly, induction of platelet aggregation by thrombin resulted in the inhibition of Rap1 activation. This downregulation correlated with the translocation of Rap1 to the Triton X-100-insoluble, cytoskeletal fraction. We conclude that in platelets, alpha-thrombin induces Rap1 activation first by a calcium-mediated pathway independently of PKC and then by a second activation phase mediated by PKC and, in part, integrin alpha(IIb)beta(3). Inactivation of Rap1 is mediated by an aggregation-dependent process that correlates with the translocation of Rap1 to the cytoskeletal fraction.  相似文献   

9.
《The Journal of cell biology》1996,134(6):1349-1363
We have developed a novel technique for combined immunofluorescence/in situ hybridization on fixed budding yeast cells that maintains the three-dimensional structure of the nucleus as monitored by focal sections of cells labeled with fluorescent probes and by staining with a nuclear pore antibody. Within the resolution of these immunodetection techniques, we show that proteins encoded by the SIR3, SIR4, and RAP1 genes colocalize in a statistically significant manner with Y' telomere- associated DNA sequences. In wild-type cells the Y' in situ hybridization signals can be resolved by light microscopy into fewer than ten foci per diploid nucleus. This suggests that telomeres are clustered in vegetatively growing cells, and that proteins essential for telomeric silencing are concentrated at their sites of action, i.e., at telomeres and/or subtelomeric regions. As observed for Rap1, the Sir4p staining is diffuse in a sir3- strain, and similarly, Sir3p staining is no longer punctate in a sir4- strain, although the derivatized Y' probe continues to label discrete sites in these strains. Nonetheless, the Y' FISH is altered in a qualitative manner in sir3 and sir4 mutant strains, consistent with the previously reported phenotypes of shortened telomeric repeats and loss of telomeric silencing.  相似文献   

10.
Identification of human Rap1: implications for telomere evolution   总被引:26,自引:0,他引:26  
Li B  Oestreich S  de Lange T 《Cell》2000,101(5):471-483
It has been puzzling that mammalian telomeric proteins, including TRF1, TRF2, tankyrase, and TIN2 have no recognized orthologs in budding yeast. Here, we describe a human protein, hRap1, that is an ortholog of the yeast telomeric protein, scRap1p. hRap1 has three conserved sequence motifs in common with scRap1, is located at telomeres, and affects telomere length. However, while scRap1 binds telomeric DNA directly, hRap1 is recruited to telomeres by TRF2. Extending the comparison of telomeric proteins to fission yeast, we identify S. pombe Taz1 as a TRF ortholog, indicating that TRFs are conserved at eukaryotic telomeres. The data suggest that ancestral telomeres, like those of vertebrates, contained a TRF-like protein as well as Rap1. We propose that budding yeast preserved Rap1 at telomeres but lost the TRF component, possibly concomitant with a change in the telomeric repeat sequence.  相似文献   

11.
Rap1 and Rap2 are closely related proteins of the Ras family of small G-proteins. Rap1 is well known to regulate cell-cell adhesion. Here, we have analysed the effect of Rap-mediated signalling on endothelial permeability using electrical impedance measurements of HUVEC monolayers and subsequent determination of the barrier resistance, which is a measure for the ease with which ions can pass cell junctions. In line with its well-established effect on cell-cell junctions, depletion of Rap1 decreases, whereas activation of Rap1 increases barrier resistance. Despite its high sequence homology with Rap1, depletion of Rap2 has an opposite, enhancing, effect on barrier resistance. This effect can be mimicked by depletion of the Rap2 specific activator RasGEF1C and the Rap2 effector MAP4K4, establishing Rap2 signalling as an independent pathway controlling barrier resistance. As simultaneous depletion or activation of both Rap1 and Rap2 results in a barrier resistance comparable to control cells, Rap1 and Rap2 control barrier resistance in a reciprocal manner. This Rap1-antagonizing effect of Rap2 is established independent of junctional actin formation. These data establish that endothelial barrier resistance is determined by the combined antagonistic actions of Rap1 and Rap2.  相似文献   

12.
Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG(1-3) repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length.  相似文献   

13.
Tetrahymena telomeres usually consist of approximately 250 base pairs of T(2)G(4) repeats, but they can grow to reach a new length set point of up to 900 base pairs when kept in log culture at 30 degrees C. We have examined the growth profile of individual macronuclear telomeres and have found that the rate and extent of telomere growth are affected by the subtelomeric region. When the sequence of the rDNA subtelomeric region was altered, we observed a decrease in telomere growth regardless of whether the GC content was increased or decreased. In both cases, the ordered structure of the subtelomeric chromatin was disrupted, but the effect on the telomeric complex was relatively minor. Examination of the telomeres from non-rDNA chromosomes showed that each telomere exhibited a unique and characteristic growth profile. The subtelomeric regions from individual chromosome ends did not share common sequence elements, and they each had a different chromatin structure. Thus, telomere growth is likely to be regulated by the organization of the subtelomeric chromatin rather than by a specific DNA element. Our findings suggest that at each telomere the telomeric complex and subtelomeric chromatin cooperate to form a unique higher order chromatin structure that controls telomere length.  相似文献   

14.
Summary The heterogeneity of the C-band of human chromosome 1 has been evaluated using several selective staining methods: C-banding (CBG), distamycin A plus 4-6-diamidino-2-phenylindole (DA/DAPI) and Giemsa G-11 pattern following the treatment with the restriction endonucleases AluI and HaeIII. The bands produced by each method are characteristic but not identical. The total C-band is resistant to AluI treatment. The bands induced by HaeIII and the one stained by DA/DAPI are markedly similar but smaller than the C-band. The G-11 technique stains yet smaller regions than those of HaeIII and DA/DAPI. Depending on the expression of staining properties, the C-band of chromosome 1 usually consists of three subdivisions: the proximal, intermediate and distal regions, suggesting an extremely heterogeneous nature. The staining variations between different regions are further substantiated by studies of a reciprocal translocation where the proximal region and the remaining C-band of chromosome 1 are separate.  相似文献   

15.
Recent studies have suggested that Rap1 and Rap2 small GTP-binding proteins are both expressed in human red blood cells (RBCs). In this work, we carefully examined the expression of Rap proteins in leukocytes- and platelets-depleted RBCs, whose purity was established on the basis of the selective expression of the beta2 subunit of the Na+/K+ -ATPase, as verified according to the recently proposed "beta-profiling test" [J.F. Hoffman, A. Wickrema, O. Potapova, M. Milanick, D.R. Yingst, Na pump isoforms in human erythroid progenitor cells and mature erythrocytes, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 14572-14577]. In pure RBCs preparations, Rap2, but not Rap1 was detected immunologically. RT-PCR analysis of mRNA extracted from highly purified reticulocytes confirmed the expression of Rap2b, but not Rap2a, Rap2c, Rap1a or Rap1b. In RBCs, Rap2 was membrane-associated and was rapidly activated upon treatment with Ca2+/Ca2+ -ionophore. In addition, Rap2 segregated and was selectively enriched into microvesicles released by Ca2+ -activated RBCs, suggesting a possible role for this GTPase in membrane shedding.  相似文献   

16.
Rap proteins are Ras-like small GTP-binding proteins that amongst others are involved in the control of cell-cell and cell-matrix adhesion. Several Rap guanine nucleotide exchange factors (RapGEFs) function to activate Rap. These multi-domain proteins, which include C3G, Epacs, PDZ-GEFs, RapGRPs and DOCK4, are regulated by various different stimuli and may function at different levels in junction formation. Downstream of Rap, a number of effector proteins have been implicated in junctional control, most notably the adaptor proteins AF6 and KRIT/CCM1. In this review, we will highlight the latest findings on the Rap signaling network in the control of epithelial and endothelial cell-cell junctions.  相似文献   

17.
The small GTPase Rap1 has been implicated in a variety of cellular processes including the control of cell morphology, proliferation, and differentiation. Stimulation of a large variety of cell surface receptors results in the rapid activation of Rap1, i.e. an increase in the GTP-bound form. This activation is mediated by second messengers like calcium, cAMP, and diacylglycerol, but additional pathways may exist as well. Here we describe a ubiquitously expressed guanine nucleotide exchange factor of 200 kDa that activates Rap1 both in vivo and in vitro. This exchange factor has two putative regulatory domains: a domain with an amino acid sequence related to cAMP-binding domains and a PDZ domain. Therefore, we named it PDZ-GEF1. PDZ-GEFs are closely related to Epacs, Rap-specific exchange factors with a genuine cAMP binding site, that are directly regulated by cAMP. The domain related to cAMP-binding domains, like the cAMP binding site in Epac, serves as a negative regulatory domain. However, PDZ-GEF1 does not interact with cAMP or cGMP. Interestingly, PDZ-GEF1 also activates Rap2, a close relative of Rap1. This is the first example of an exchange factor acting on Rap2. We conclude that PDZ-GEF1 is a guanine nucleotide exchange factor, specific for Rap1 and Rap2, that is controlled by a negative regulatory domain.  相似文献   

18.
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated primarily by endothelial cell activity. We show herein that the Ras family GTPase Rap1 has a key role in the regulation of angiogenesis by modulating endothelial cell functions. Blood vessel growth into fibroblast growth factor 2 (FGF2)-containing Matrigel plugs was absent from rap1a/ mice, and aortic rings derived from rap1a/ mice failed to sprout primitive tubes in response to FGF2, when the tissue was embedded in Matrigel. Knocking down either rap1a or rap1b, two closely related rap1 family members, in human microvascular endothelial cells (HMVECs) by utilizing siRNA confirmed that Rap1 plays key roles in endothelial cell function. The rap1a or rap1b knockdown resulted in decreased adhesion to extracellular matrices and impaired cell migration. HMVEC monolayers lacking Rap1 had increased permeability, and Rap1-deficient endothelial cells failed to form three-dimensional tubular structures when they were plated on Matrigel in vitro. Finally, the activation levels of extracellular signal-regulated kinase (ERK), p38, and Rac, which are important signaling molecules in angiogenesis, were all reduced in response to FGF2 when either of the Rap1 proteins was depleted. These observations place Rap1 centrally in the human angiogenic process and suggest that both the Rap1a and Rap1b proteins are required for angiogenesis and that Rap1 is a critical mediator of FGF-induced ERK activation.  相似文献   

19.
20.
【背景】Rap1是一种小GTP酶,其活性的检测方法少,目前主要依赖试剂盒,检测成本太高。而Rap1下游效应蛋白RalGDS具有Rap1结合结构域(Rap binding domain,RapBD),该结构域能与有活性的GTP-Rap1特异性结合。【目的】利用大肠杆菌外源表达GST-RapBD融合蛋白,建立经济的检测人源Rap1活性的方法。【方法】合成RapBD基因序列,插入pGEX-4T-1载体,使该质粒表达GST-RapBD融合蛋白,再利用GST亲和树脂结合大肠杆菌中表达的GST-RapBD融合蛋白,最后利用GST-RapBD融合蛋白Pulldown检测GTP-Rap1。【结果】建立了检测人源Rap1活性的方法。【结论】序列优化使得pGEX-4T-1载体在大肠杆菌中高效表达能特异性结合人源GTP-Rap1且带有GST标签的RapBD蛋白,提高了Pulldown实验检测GTP-Rap1的效率,降低了检测人源小G蛋白Rap1活性的成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号