首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonaka N  Banks WA  Mizushima H  Shioda S  Morley JE 《Peptides》2002,23(12):2197-2202
The blood–brain barrier (BBB) controls the exchange of peptides and regulatory proteins between the central nervous system (CNS) and the blood. Transport across the BBB of such regulatory substances is altered in animal models of Alzheimer’s disease. These alterations could lead to cognitive impairments or diminish their therapeutic potential. Here, we measured the transport rate of radioactively labeled pituitary adenylate cyclase-activating polypeptide (PACAP) from blood into whole brain and into 11 brain regions in three groups of mice: young (2 months old) ICR, young (2 months old) SAMP8, and aged (12 months old) SAMP8 mice. The SAMP8 is a strain which develops impaired learning and memory with aging that correlates with an age-related increase in brain levels of amyloid β protein (AβP). PACAP is a powerful neurotrophin that may have a therapeutic role in neurodegenerative diseases. We found that I-PACAP crossed the BBB fastest at the hypothalamus and the hippocampus in all three groups. Slower transport rates into the whole brain, the olfactory bulb, the hypothalamus, and the hippocampus for aged SAMP8 mice was likely related to differences both from strain and expression of AβP with aging.  相似文献   

2.

Background

The blood brain barrier (BBB) is impermeable to most drugs, impeding the establishment of novel neuroprotective therapies and strategies for many neurological diseases. Intranasal administration offers an alternative path for efficient drug delivery into the CNS. So far, the anatomical structures discussed to be involved in the transport of intranasally administered drugs into the CNS include the trigeminal nerve, olfactory nerve and the rostral migratory stream (RMS), but the relative contributions are debated.

Methods and Findings

In the present study we demonstrate that surgical transection, and the resulting structural disruption of the RMS, in mice effectively obstructs the uptake of intranasally administered radioligands into the CNS. Furthermore, using a fluorescent cell tracer, we demonstrate that intranasal administration in mice allows agents to be distributed throughout the entire brain, including olfactory bulb, hippocampus, cortex and cerebellum.

Conclusions

This study provides evidence of the vital role the RMS has in the CNS delivery of intranasally administered agents. The identification of the RMS as the major access path for intranasally administered drugs into the CNS may contribute to the development of treatments that are tailored for efficient transport within this structure. Research into the RMS needs to continue to elucidate its limitations, capabilities, mechanisms of transport and potential hazards before we are able to advance this technique into human research.  相似文献   

3.
Impaired transport of leptin across the blood-brain barrier in obesity   总被引:7,自引:0,他引:7  
Banks WA  DiPalma CR  Farrell CL 《Peptides》1999,20(11):1341-1345
Leptin is a 17-kDa protein secreted by fat cells that regulates body adiposity by crossing the blood-brain barrier (BBB) to affect feeding and thermogenesis. Obese human and rodent models of dietary obesity have shown decreased sensitivity to blood-borne leptin, postulated to be due to impaired transport of leptin across the BBB. We show here that the transport rate of leptin across the BBB is reduced about 2/3 in 12-month-old obese CD-1 mice. In a follow-up study, a perfusion method was used that replaced the blood with a buffer containing low concentrations of radioactive leptin. Obese mice still had lower rates of transport into the brain than lean mice, which shows that the reduction in transport rate associated with obesity is not due simply to saturation of transporter secondary to higher serum leptin levels as has been thought, but to a decreased capacity of the BBB to transport leptin. This suggests a new model for obesity in which a defect in the BBB transport of leptin into the CNS underlies the insensitivity to leptin and leads to obesity.  相似文献   

4.
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.  相似文献   

5.
The blood-brain barrier: connecting the gut and the brain   总被引:1,自引:0,他引:1  
Banks WA 《Regulatory peptides》2008,149(1-3):11-14
The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated by the ability of insulin to alter the BBB transport of amino acids and drugs, represents a second mechanism. A third mechanism is the ability of GI hormones to affect the secretion by the BBB of substances that themselves affect feeding and appetite, such as nitric oxide and cytokines. By these and other mechanisms, the BBB regulates communications between the CNS and GI tract.  相似文献   

6.
A new recombinant vesicular stomatitis virus (rVSV) that expresses green fluorescent protein (GFP) on the cytoplasmic domain of the VSV glycoprotein (G protein) was used in the mouse as a model for studying brain infections by a member of the Mononegavirales order that can cause permanent changes in behavior. After nasal administration, virus moved down the olfactory nerve, first to periglomerular cells, then past the mitral cell layer to granule cells, and finally to the subventricular zone. Eight days postinoculation, rVSV was eliminated from the olfactory bulb. Little sign of infection could be found outside the olfactory system, suggesting that anterograde or retrograde axonal transport of rVSV was an unlikely mechanism for movement of rVSV out of the bulb. When administered intracerebrally by microinjection, rVSV spread rapidly within the brain, with strong infection at the site of injection and at some specific periventricular regions of the brain, including the dorsal raphe, locus coeruleus, and midline thalamus; the ventricular system may play a key role in rapid rVSV dispersion within the brain. Thus, the lack of VSV movement out of the olfactory system was not due to the absence of potential for infections in other brain regions. In cultures of both mouse and human central nervous system (CNS) cells, rVSV inoculations resulted in productive infection, expression of the G-GFP fusion protein in the dendritic and somatic plasma membrane, and death of all neurons and glia, as detected by ethidium homodimer nuclear staining. Although considered a neurotropic virus, rVSV also infected heart, skin, and kidney cells in dispersed cultures. rVSV showed a preference for immature neurons in vitro, as shown by enhanced viral infection in developing hippocampal cultures and in the outer granule cell layer in slices of developing cerebellum. Together, these data suggest a relative affinity of rVSV for some neuronal types in the CNS, adding to our understanding of the long-lasting changes in rodent behavior found after transient VSV infection.  相似文献   

7.
8.
Abstract— Intact olfactory bulbs from 8- to 15-day-old mice were compared to slices of olfactory bulb and cerebral hemisphere with respect to uptake of amino acids, respiratory rate, levels of ATP, retention of sodium and potassium, and extracellular space. The uptake of amino acids was lower in intact bulbs than in slice preparations, both in regard to initial rates of uptake and to final steady state levels, at external amino acid concentrations from 0·2 to 2·0mM. Uptake was lower in bulbs attached to brain than in those separated from it and somewhat higher in the half of the bulb closer to the cut surface. In all preparations the uptake of glutamic acid and glycine was highest, uptake of histidine and valine was intermediate, and uptake of lysine was lowest. These differences between intact bulbs and slices could not be correlated with differences in respiratory rate, levels of ATP, or changes in levels of Na+ or K+ ions. Increases in dextran and inulin spaces, however, were greatest in preparations having the highest rates of amino acid uptake. Although for several amino acids the maximal velocity of uptake (Vmax) was 4-fold higher in slices of bulb than in intact bulbs, the affinity of amino acids to their carrier systems ( K m) was similar, an indication that the same transport process was operative in both cases. On the basis of these results we propose that intact olfactory bulbs incubated in vitro possess a regulatory mechanism for the limitation of amino acid uptake that is absent or diminished in slices.  相似文献   

9.
During insulin stupor in mice, acetylcholine levels in cerebral cortex, cerebellum. brainstem, striatum, and hippocampus were unchanged from control values despite brain glucose concentrations 3-10% of normal, whereas choline levels rose 2.4-3.6-fold in all five CNS regions. Brain acetylcholine and choline levels did not change during recovery following glucose injection. The data suggest that. in hypoglycemic stupor, (1) overall rates of acetylcholine synthesis and degradation remain balanced within each of the CNS regions studied: (2) the biochemical mechanism that elevates brain choline levels is unlikely to be related only to cholinergic synaptic processes: and (3) brain choline levels need not rise for stupor to occur.  相似文献   

10.
The blood–brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β?catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.  相似文献   

11.
This review examines interactions in the mammalian central nervous system (CNS) between carnosine and the endogenous transition metals zinc and copper. Although the relationship between these substances may be applicable to other brain regions, the focus is on the olfactory system where these substances may have special significance. Carnosine is not only highly concentrated in the olfactory system, but it is also contained in neurons (in contrast to glia cells in most of the brain) and has many features of a neurotransmitter. Whereas the function of carnosine in the CNS is not well understood, we review evidence that suggests that it may act as both a neuromodulator and a neuroprotective agent. Although zinc and/or copper are found in many neuronal pathways in the brain, the concentrations of zinc and copper in the olfactory bulb (the target of afferent input from sensory neurons in the nose) are among the highest in the CNS. Included in the multitude of physiological roles that zinc and copper play in the CNS is modulation of neuronal excitability. However, zinc and copper also have been implicated in a variety of neurologic conditions including Alzheimer's disease, Parkinson's disease, stroke, and seizures. Here we review the modulatory effects that carnosine can have on zinc and copper's abilities to influence neuronal excitability and to exert neurotoxic effects in the olfactory system. Other aspects of carnosine in the CNS are reviewed elsewhere in this issue.  相似文献   

12.
Central nervous system (CNS) infection by Mycobacterium tuberculosis is one of the most devastating complications of tuberculosis, in particular in early childhood. In order to induce CNS infection, M. tuberculosis needs to cross specialised barriers protecting the brain. How M. tuberculosis crosses the blood–brain barrier (BBB) and enters the CNS is not well understood. Here, we use transparent zebrafish larvae and the closely related pathogen Mycobacterium marinum to answer this question. We show that in the early stages of development, mycobacteria rapidly infect brain tissue, either as free mycobacteria or within circulating macrophages. After the formation of a functionally intact BBB, the infiltration of brain tissue by infected macrophages is delayed, but not blocked, suggesting that crossing the BBB via phagocytic cells is one of the mechanisms used by mycobacteria to invade the CNS. Interestingly, depletion of phagocytic cells did not prevent M. marinum from infecting the brain tissue, indicating that free mycobacteria can independently cause brain infection. Detailed analysis showed that mycobacteria are able to cause vasculitis by extracellular outgrowth in the smaller blood vessels and by infecting endothelial cells. Importantly, we could show that this second mechanism is an active process that depends on an intact ESX‐1 secretion system, which extends the role of ESX‐1 secretion beyond the macrophage infection cycle.  相似文献   

13.
Proteins of the neuregulin (NRG) family play important regulatory roles in neuronal survival and synaptic activity. NRG-1-beta1 has particular potential as a therapeutic agent because it enhances myelination of neurites in spinal cord explants. In this study, we determined the permeation of NRG-1-beta1 across the blood-brain and blood-spinal cord barriers (BBB and BSCB respectively). Intact radioactively labeled NRG-1-beta1 had a saturable and relatively rapid influx rate from blood to the CNS in mice. Capillary depletion studies showed that NRG-1-beta1 entered the parenchyma of the brain and spinal cord rather than being trapped in the capillaries that compose the BBB. The possible mechanism of receptor-mediated transport was shown by the ability of antibodies to erbB3 and erbB4 receptors to inhibit the influx. Lipophilicity, less important for such saturable transport mechanisms, was measured by the octanol : buffer partition coefficient and found to be low. The results indicate that NRG-1-beta1 enters spinal cord and brain by a saturable receptor-mediated mechanism, which provides the opportunity for possible therapeutic manipulation at the BBB level.  相似文献   

14.
Lipoprotein remodelling in the periphery has been extensively studied. For example, the processing of nascent apoAI particles to cholesterol-loaded HDL lipoproteins during reverse cholesterol transport involves a series of enzymes, transporters in peripheral tissue, as well as other apolipoproteins and lipoproteins. These extensive modifications and interconversions are well defined. Here, we present the hypothesis that a similar process occurs within the blood brain barrier (BBB) via glia-secreted lipid-poor apoE particles undergoing remodelling to become mature central nervous system (CNS) lipoproteins. We further pose several pressing issues and future directions for the study of lipoproteins in the brain.  相似文献   

15.
Pan W  Tu H  Kastin AJ 《Peptides》2006,27(4):911-916
Endogenous compounds, including ingestive peptides, can interact with the blood-brain barrier (BBB) in different ways. Here we used in vivo and in vitro techniques to examine the BBB permeation of the newly described satiety peptide obestatin. The fate of obestatin in blood and at the BBB was contrasted with that of adiponectin. By the sensitive multiple time-regression method, obestatin appeared to have an extremely fast influx rate to the brain whereas adiponectin did not cross the BBB. HPLC analysis, however, showed the obestatin result to be spurious, reflecting rapid degradation. Absence of BBB permeation by obestatin and adiponectin was in contrast to the saturable transport of human ghrelin reported previously. As a positive control, ghrelin showed saturable binding and endocytosis in RBE4 cerebral microvessel endothelial cells. By comparison, obestatin lacked specific binding and endocytosis, and the small amount internalized showed rapid intracellular degradation before the radioactivity was released by exocytosis. The differential interactions of obestatin, adiponectin, and ghrelin with the BBB illustrate their distinctive physiological interactions with the CNS.  相似文献   

16.
Pan W  Kastin AJ 《Life sciences》2001,68(24):2705-2714
The blood-brain barrier (BBB) regulates the amount of peripherally produced leptin reaching the brain. Knowing that the blood concentration of leptin has a circadian rhythm, we investigated whether the influx of leptin at the BBB followed the same pattern in three main sets of experiments. (a): The entry of 125I-leptin from blood to brain was measured in mice every 4 h, as indicated by the influx rate of 125I-leptin 1-10 min after an iv bolus injection. The blood concentration of endogenous leptin was measured at the same times. Blood leptin concentrations were higher at night and early morning (peak at 0800 h) and lower during the day (nadir at 1600 h). By contrast, the influx of 125I-leptin was fastest at 2000 h and slowest at 0400 h. Addition of unlabeled leptin (1 microg/mouse) significantly decreased the influx rate of 125I-leptin at all time points, indicating saturability of the transport system. The unlabeled leptin also abolished the diurnal variation of the influx of 125I-leptin. (b): The entry of 125I-leptin into spinal cord was faster than that into brain and showed a different diurnal pattern. The greatest influx occurred at 2400 h and the slowest at 0800 h. In spinal cord, unlike brain, unlabeled leptin (1 microg/mouse) neither inhibited the influx of 125I-leptin nor abolished the diurnal rhythm. (c): Higher concentrations of unlabeled leptin (5 microg/mouse) inhibited the uptake of 125I-leptin in spinal cord as well as in brain, but not in muscle. This experiment measured uptake 10 min after iv injection at 0600 h (beginning of the light cycle) and 1800 h (beginning of the dark cycle). Thus, influx of 125I-leptin into the CNS shows diurnal variation, indicating a circadian rhythm in the transport system at the BBB, saturation of the leptin transport system shows differences between the brain and spinal cord, and blood concentrations of leptin suggest that partial saturation of the transport system occurs at physiological concentrations of circulating leptin, contributing to the differing diurnal patterns in brain and spinal cord. Together, the results show that the BBB is actively involved in the neuroendocrine regulation of feeding behavior.  相似文献   

17.
The purpose of this study was to clarify the mechanism of the blood-brain barrier (BBB) transport of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), which is a novel dermorphin analog with high affinity for the micro 1-opioid receptor. The in vivo BBB permeation influx rate of [125I]TAPA after an i.v. bolus injection (7.3 pmol/g body weight) into mice was estimated to be 0.265 +/- 0.025 microL/(min.g of brain). The influx rate of [125I]TAPA was reduced 70% by the coadministration of unlabeled TAPA (33 nmol/g of brain), suggesting the existence of a specific transport system for TAPA at the BBB. In order to elucidate the BBB transport mechanism of TAPA, a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4) was used as an in vitro model of the BBB. The acid-resistant binding of [125I]TAPA, which represents the internalization of the peptide into cells, was temperature- and concentration-dependent with a half-saturation constant of 10.0 +/- 1.7 microm. The acid-resistant binding of TAPA was significantly inhibited by 2,4-dinitrophenol, dansylcadaverine (an endocytosis inhibitor) and poly-l-lysine and protamine (polycations). These results suggest that TAPA is transported through the BBB by adsorptive-mediated endocytosis, which is triggered by binding of the peptide to negatively charged sites on the surface of brain capillary endothelial cells. Blood-brain barrier transport via adsorptive-mediated endocytosis plays a key role in the expression of the potent opioid activity of TAPA in the CNS.  相似文献   

18.
Development of the blood-brain barrier   总被引:7,自引:0,他引:7  
The endothelial cells forming the blood-brain barrier (BBB) are highly specialized to allow precise control over the substances that leave or enter the brain. An elaborate network of complex tight junctions (TJ) between the endothelial cells forms the structural basis of the BBB and restricts the paracellular diffusion of hydrophilic molecules. Additonally, the lack of fenestrae and the extremely low pinocytotic activity of endothelial cells of the BBB inhibit the transcellular passage of molecules across the barrier. On the other hand, in order to meet the high metabolic needs of the tissue of the central nervous system (CNS), specific transport systems selectively expressed in the membranes of brain endothelial cells in capillaries mediate the directed transport of nutrients into the CNS or of toxic metabolites out of the CNS. Whereas the characteristics of the mature BBB endothelium are well described, the cellular and molecular mechanisms that control the development, differentiation and maintenance of the highly specialized endothelial cells of the BBB remain unknown to date, despite the recent explosion in our knowledge of the growth factors and their receptors specifically acting on vascular endothelium during development. This review summarizes our current knowledge of the cellular and molecular mechanisms involved in the development and maintenance of the BBB.  相似文献   

19.
Glutathione (GSH) plays a critical role in protecting cells from oxidative stress and xenobiotics, as well as maintaining the thiol redox state, most notably in the central nervous system (CNS). GSH concentration and synthesis are highly regulated within the CNS and are limited by availability of the sulfhydryl amino acid (AA) l-cys, which is mainly transported from the blood, through the blood-brain barrier (BBB), and into neurons. Several antiporter transport systems (e.g., x(c)(-), x(-)(AG), and L) with clearly different luminal and abluminal distribution, Na(+), and pH dependency have been described in brain endothelial cells (BEC) of the BBB, as well as in neurons, astrocytes, microglia and oligodendrocytes from different brain structures. The purpose of this review is to summarize information regarding the different AA transport systems for l-cys and its oxidized form l-cys(2) in the CNS, such as expression and activity in blood-brain barrier endothelial cells, astrocytes and neurons and environmental factors that modulate transport kinetics.  相似文献   

20.
In the present study, we describe the specificity and the autoradiographic distribution of insulin binding sites in the rat central nervous system (CNS) after in vitro incubation of brain sections with [125I]-14A insulin. Increasing concentrations of unlabeled insulin produced a dose-dependent inhibition of [125I]-insulin binding which represented 92 +/- 2% displacement with 3 X 10(-5) M, whatever the brain sections tested. Half-maximum inhibition with native insulin was obtained with 2.2 X 10(-9) M, with 10(-7) M proinsulin whereas glucagon had no effect. Under our experimental conditions, no degradation of [125I]-insulin was observed. Autoradiograms obtained by apposition of LKB 3H-Ultrofilm showed a widespread distribution of [125I]-insulin in rat CNS. However, quantitative analysis of the autoradiograms with 10(-10) M of labeled insulin, showed a high number of [125I]-insulin binding sites in the choroid plexus, olfactory areas, in both cerebral and cerebellar cortices, the amygdaloid complex and in the septum. In the hippocampal formation, the dorsal dentate gyrus and various subfields of CA1, CA2 and CA3 were labeled. Moreover, arcuate, dorso- and ventromedial nuclei of the hypothalamus contained high concentrations of [125I]-insulin whereas a low density was observed in the mesencephalon. The metabolic role of insulin in the CNS is supported by the large distribution of insulin binding sites in the rat brain. However, the presence of high affinity binding sites in selective areas involved in perception and integrative processes as well as in the regulation of both feeding behavior and neuroendocrine functions, suggests a neuromodulatory role of insulin in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号