首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA adducts were analyzed by 32P-postlabeling method following exposure of human uroepithelial cells (HUC) to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP). TLC of the postlabeled products on the first dimension revealed several products, the majority of which stayed close to the origin and were earlier identified as the 3',5' -bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (Carcinogenesis 13 (1993) 955; Carcinogenesis 16 (1995) 295). Here we report characterization of two additional adducts that amounted to less than 5% of the total adducts. Autoradiography of D1 chromatogram of the postlabeled products of calf thymus DNA chemically interacted with N-OH-ABP under acidic conditions revealed two adducts, #1 and #2, with R(f) values of about 0.2 and 0.3, respectively. Two adducts with D1 thin layer chromatographic properties similar to those of adducts #1 and #2 were obtained on postlabeling analyses of products generated by chemical interaction of N-acetoxy-4-aminobiphenyl (N-OAc-ABP) with deoxyguanosine-3' -monophosphate (dGp). Based on proton NMR and mass spectroscopic analyses of the synthetic products derived from N-OAc-ABP, the chemical structures of adducts #1 and #2 have been identified as 3-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, and N-(deoxyguanosin-N(2)-yl)-4-aminobiphenyl, respectively. Both of these adducts were insensitive to digestion with nuclease P1. 32P-Postlabeling analysis of the nuclease P1 enriched DNA hydrolysate of HUC cells treated with N-OH-ABP showed the presence of adduct #2 but not adduct #1. Adduct #2 was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl CoA. These results suggest that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP is bioactivated by acetyl CoA-dependent acyltransferases to reactive arylnitrenium ions that covalently interact at N(2)-position of deoxyguanosine in DNA.  相似文献   

2.
Formation of DNA adducts in various tissues of dogs fed a single dose of the carcinogen 2-aminofluorene was investigated. Adduct analysis was performed using a technique that allows measurement of both N-(deoxyguanosin-8-yl)-2-amino-2-aminofluorene-DNA adduct formed by reaction of N-hydroxy-2-aminofluorene with DNA, as well as the polar 2-aminofluorene-DNA adducts formed when 2-aminofluorene is activated by prostaglandin H synthase-peroxidase in vitro. Two male beagle (A and B) dogs were examined and a different DNA adduct profile was observed with each dog. For the dog A, N-(deoxyguanosin-8-yl)-2-aminofluorene was the major adduct found in hepatic DNA; no peroxidase-derived adducts were detected in this tissue. In contrast, adducts eluting similarly to peroxidase-derived adducts were found in urinary tract tissues of this dog with the relative abundance of these adducts in the order urothelium greater than renal medulla greater than renal cortex, which correlates with the respective tissues' prostaglandin H synthase activity. N-(Deoxyguanosin-8-yl)-2-aminofluorene was detected in the renal tissues, but not in urothelium. For dog B, only the N-(deoxyguanosin-8-yl)-2-aminofluorene adduct was observed in all tissues examined, including the urothelium. However, total binding to liver, kidney, and bladder were two-, two-, and four-fold lower, respectively, than dog A. These data indicate that both prostaglandin H synthase-mediated activation and N-hydroxylation of 2-aminofluorene occur in vivo and may be subjected to pharmacodynamic considerations. Furthermore, the tissue distribution of the peroxidase-mediated 2-aminofluorene adducts suggests this process may also be of importance in the bladder-specific carcinogenicity of aromatic amines.  相似文献   

3.
Aflatoxin B1 (AFB1) is a potent carcinogen. It reacts with liver DNA and serum albumin in a dose-dependent manner. Serum albumin adducts of aflatoxins have been used for exposure assessment. The immunological methods used so far do not differentiate between the different adducts of AFB1 and of AFG1. In order to establish an analytical method to measure one specific AFB1 adduct, we investigated the structure and the chemistry of the major serum albumin adduct of aflatoxin B1 (lysine-AFB1). 13C-NMR, 1H-NMR, UV, IR, fluorescence and MS spectra of lysine-AFB1 (8-[N-(2-amino-hexanoyl-6-yl)-5-oxo-3-pyrrolin-3-yl]-7-hydroxy-5- methoxycyclopentenone[2.3-c]coumarin) were recorded and discussed. The quantification of lysine-AFB1 was demonstrated in biological samples. Serum albumin was digested with pronase and analysed by HPLC with a fluorimeter as detector. The detection limit found for lysine-AFB1 was 20 fmol.  相似文献   

4.
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.  相似文献   

5.
T M Reid  M S Lee  C M King 《Biochemistry》1990,29(26):6153-6161
Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by greater than 7-fold to 2.9% and of the AAF adduct by greater than 12-fold to 0.75%. The mutation frequency of the AF adduct was greatly reduced in a uvrA- strain while no mutations occurred with the AAF adduct in this strain. The sequence changes resulting from these treatments were dependent on adduct structure and the presence or absence of uracil on the strand opposite the adducts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Epichlorohydrin (a probable human carcinogen) was allowed to react with adenosine and the adducts were characterized by NMR and UV spectroscopy, and mass spectrometry. The adduct initially formed was 1-(3-chloro-2-hydroxypropyl)-adenosine, which subsequently ring closures to 1,N(6)-(2-hydroxypropyl)-adenosine at neutral and basic conditions. At acid conditions, the N-1 adduct undergoes a slow deamination to yield 1-(3-chloro-2-hydroxypropyl)-inosine. Minor adducts identified were 7-(3-chloro-2-hydroxypropyl)-adenosine and 3-(3-chloro-2-hydroxypropyl)-adenosine which are easily deglycosylated, and an adduct where the epichlorohydrin residue was attached to the sugar moiety of adenosine. A diadduct, 1,N(6)-(2-hydroxypropyl)-N(6)-(3-chloro-2-hydroxypropyl)-adenosine was also identified. The reaction of epichlorohydrin with calf thymus DNA gave 1,N(6)-(2-hydroxypropyl)-deoxyadenosine and 3-(3-chloro-2-hydroxypropyl)-adenine (major adduct).  相似文献   

7.
Acrolein, an important industrial chemical and environmental contaminant, has been shown to interact with nucleic acids in vitro and in vivo. In this study, we examined the reactivity of acrolein towards thymidine and calf-thymus double- and single-stranded DNA in aqueous buffered solutions. LC-MS Analyses of the reaction mixture of acrolein with thymidine showed the formation of five structurally different adducts. The structures of the products were determined on the basis of mass spectrometry, UV absorbance, and (1)H- and (13)C-NMR spectroscopy. The adducts were identified as 3-(3-oxopropyl)thymidine (dT1), 3-[(tetrahydro-2,4-dihydroxypyran-3-yl)methyl]thymidine (dT2), 2-(hydroxymethyl)-5-(thymidin-3-yl)pent-2-enal (dT3), 3-hydroxy-2-methylidene-5-(thymidin-3-yl)pentanal (dT4), and 2-[(thymidin-3-yl)methyl]penta-2,4-dienal (dT5). The adducts dT2-dT5 were formed in reaction of dT1 with acrolein. In the reaction of acrolein with calf-thymus DNA, dT1 was the only adduct detected in the DNA hydrolysate.  相似文献   

8.
Two related carcinogen adducts, N-(deoxyguanosin-8-yl)-2-aminofluorene (AF) or N-(deoxyguanosin-8-yl)-N-acetyl-2-aminofluorene (AAF), were introduced into the lacZ' gene at base position 6253 of the minus strand of M13mp9 viral DNA. The construction of this site-specifically modified DNA was accomplished by first preparing a gapped heteroduplex missing 7 nucleotides at position 6251-6257 followed by ligation with an unmodified heptamer or with a heptamer containing either an AF or AAF adduct. These site-specifically modified templates were transfected into competent wild-type Escherichia coli cells (JM103) and a uvrA strain (SMH12). The mutation spectrum was determined by phenotypic selection of colorless plaques indicating a defective beta-galactosidase marker enzyme and by an in situ hybridization procedure to detect single base pair mismatches in the adduct region. DNA sequencing was used to characterize 179 of the mutants obtained. We found that both adducts were capable of inducing base substitution mutations at the adduct site and in the local region of the adduct. A specific frameshift (+1G) was also observed at a displaced site. All of the frameshift mutations occurred at the ligation site of the modified oligonucleotide. Control experiments with an unmodified oligonucleotide did not show an enhancement of mutations at this site, indicating that the adducts may have been responsible for these frameshifts. The mutations spectra induced by these adducts suggest that mutagenesis depends not only on adduct structure but also the sequence in which the adduct is located and the host cell type used for mutation expression.  相似文献   

9.
The dideoxynucleotides d(pGpG) and d(pApG) and the tetradeoxynucleotide d(CpTpApG) were synthesized in solution phase by a modified phosphotriester technique and reacted with the anticancer agent cis-diamminedichloroplatinum(II) (cisplatin). The major products were isolated by HPLC and characterized by NMR and mass spectrometry as cross-link adducts of cisplatin with the neighboring purine bases. The cross-link adducts of d(pGpG) and d(pApG) were dansylated through a 5'-phosphoramidate linkage with ethylenediammine. The labeling efficiency of the adducts was quantitative as in the case of the normal dinucleotides. The modified tetramer was digested with nuclease P1. The excised adduct was enriched by HPLC and labeled with dansyl chloride. The analysis of the postlabeled adduct by HPCL, using a fluorescence detector, detected a peak with retention time corresponding to that of the dansylated cis-Pt(NH3)2d(pApG). Cochromatography with the authentic marker confirmed the identification. The same overall procedure was used to assay calf thymus DNA exposed to cisplatin. The major adducts were identified as cis-Pt(NH3)2d(pGpG) and cis-Pt(NH3)2d(pApG). The quantitative labeling efficiency of platinum adducts combined with highly sensitive fluorescence detection technique (subfemtomol) suggests that fluorescence postlabeling assay could be a novel approach for real-time analysis of DNA modification induced by platinated drugs in biological system.  相似文献   

10.
An improved HPLC-based 32P-postlabeling assay has been developed for the analysis of DNA modified with the food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Postlabeled samples are loaded onto a C18 precolumn and adducted bases are retained while excess radioactivity and unmodified DNA bases are eluted directly to waste through a switching valve. The use of this HPLC in-line precolumn purification (HIPP) technique allows entire postlabeled samples to be analyzed without prior removal of inorganic phosphate and unmodified DNA bases. The method has a sample to sample precision of 15% and accuracy of 20%, at adduct levels of 2 adducts/107 bases and shows a linear relationship between signal and adduction levels from 1 adduct per 104 to ≈ 2±1 adducts per 109 bases. Individual postlabeled DNA samples can be analyzed by HPLC in less than 1 h, allowing high throughput. The use of calf-thymus DNA (CT-DNA), highly modified with PhIP, or DNA isolated from mice chronically fed a PhIP-modified diet shows two major PhIP-DNA adduct peaks and three additional minor adduct peaks when labeled under ATP-limiting conditions. Isolation of the HPLC purified peaks and analysis by thin layer chromatography (TLC) matches the five HPLC peaks to the spots typically seen by TLC, including N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Variations in digestion techniques indicate a potential resistance of the PhIP-DNA adducts to the standard enzymatic digestion methods. Attempts at adduct intensification by solid phase extraction, nuclease P1 enrichment or 1-butanol extraction decreased PhIP-DNA adduct peaks and introduced a large early eluting peak. Removal of the 3′-phosphate with nuclease P1 following the kinase labeling reaction simplifies the HPLC profile to one major peak (dG-C8-PhIP monophosphate) with several minor peaks. In addition to the high resolution provided by HPLC separation of the PhIP-DNA adducts, this method can be adjusted for analysis of other DNA adducts and is readily automated for high throughput.  相似文献   

11.
Dzantiev L  Romano LJ 《Biochemistry》2000,39(17):5139-5145
The carcinogen N-acetyl-2-aminofluorene forms two major DNA adducts: the N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene adduct (dG-C8-AAF) and its deacetylated derivative, the N-(2'-deoxyguanosin-8-yl)-2-aminofluorene adduct (dG-C8-AF). It is well established that the AAF adduct is a very strong block for DNA synthesis in vitro while the AF adduct is more easily bypassed. In an effort to understand the molecular mechanism of this phenomenon, the structure of the complex of an exonuclease-deficient Escherichia coli DNA polymerase I (Klenow fragment) bound to primer-templates containing either an AF or AAF adduct in or near the active site was probed by nuclease and protease digestion analyses. The results of these experiments suggest that positioning the AAF adduct in the polymerase active site strongly inhibits the conformational change that is required for the insertion of a nucleotide. Similar experiments with AF-modified primer-templates shows a much less pronounced effect. The inhibition of the conformational change by either adduct is not detected if they are positioned in the single-stranded part of the template just one nucleotide before the active site. These findings may explain the different abilities of these lesions to block DNA synthesis.  相似文献   

12.
Three BODIPY GTPgammaS analogs (FL, 515, and TR), BODIPY FL GppNHp and BODIPY FL GTP molecules were synthesized as possible fluorescent probes to study guanine nucleotide binding spectroscopically. Binding to G(alphao) increases baseline analog fluorescence by 6-, 8.5-, 2.8-, 3.5-, and 3.0-fold, respectively. Binding of GTPgammaS and GppNHp analogs to G(alphao) is of high affinity (K(D) 11, 17, 55, and 110 nM, respectively) and reaches a stable plateau while fluorescence of BODIPY FL GTP shows a transient increase which returns to baseline. Furthermore, BODIPY FL GTPgammaS shows varying affinities for alpha(o), alpha(s), alpha(i1), and alpha(i2) (6, 58, 150, and 300 nM). The affinities of BODIPY FL GppNHp for all four G(alpha) subunits are 10-fold lower than for BODIPY FL GTPgammaS. Half-times for the fluorescence increase are consistent with known GDP release rates for those proteins. Enhancement of fluorescence upon binding the G(alpha) subunit is most likely due to a rotation around the gamma-thiol (GTPgammaS) or the 3' ribose-hydroxyl (GppNHp) bond to relieve the quenching of BODIPY fluorescence by the guanine base. Binding to G(alpha) exposes the BODIPY moiety to the external environment, as seen by an increase in sodium iodide quenching. The visible excitation and emission spectra and high fluorescence levels of these probes permit robust real-time detection of nucleotide binding.  相似文献   

13.
14.
In the Ames Salmonella typhimurium reversion assay 1,6- and 1,8-dinitropyrenes (1,6- and 1,8-DNPs) are much more potent mutagens than 1-nitropyrene (1-NP). Genetic experiments established that certain differences in the metabolism of the DNPs, which in turn result in increased DNA adduction, play a role. It remained unclear, however, if the DNP adducts, N-(guanin-8-yl)-1-amino-6 ()-nitropyrene (Gua-C8-1,6-ANP and Gua-C8-1,8-ANP), which contain a nitro group on the pyrene ring covalently linked to the guanine C8, are more mutagenic than the major 1-NP adduct, N-(guanin-8-yl)-1-aminopyrene (Gua-C8-AP). In order to address this, we have compared the mutation frequency of the three guanine C8 adducts, Gua-C8-AP, Gua-C8-1,6-ANP, and Gua-C8-1,8-ANP in a CGCG*CG sequence. Single-stranded M13mp7L2 vectors containing these adducts and a control were constructed and replicated in Escherichia coli. A remarkable difference in the induced CpG deletion frequency between these adducts was noted. In repair-competent cells the 1-NP adduct induced 1.7% CpG deletions without SOS, whereas the 1,6- and 1,8-DNP adducts induced 6.8 and 10.0% two-base deletions, respectively. With SOS, CpG deletions increased up to 1.9, 11.1, and 15.1% by 1-NP, 1,6-, and 1,8-DNP adducts, respectively. This result unequivocally established that DNP adducts are more mutagenic than the 1-NP adduct in the repetitive CpG sequence. In each case the mutation frequency was significantly increased in a mutS strain, which is impaired in methyl-directed mismatch repair, and a dnaQ strain, which carries a defect in proofreading activity of the DNA polymerase III. Modeling studies showed that the nitro group on the pyrene ring at the 8-position can provide additional stabilization to the two-nucleotide extrahelical loop in the promutagenic slipped frameshift intermediate through its added hydrogen-bonding capability. This could account for the increase in CpG deletions in the M13 vector with the nitro-containing adducts compared with the Gua-C8-AP adduct itself.  相似文献   

15.
Adducts of catechols and histidine, which are produced by reactions of 1,2-quinones and p-quinone methides with histidyl residues in proteins incorporated into the insect exoskeleton, were characterized using electrospray ionization mass spectrometry (ESMS), tandem electrospray mass spectrometry (ESMS-MS, collision-induced dissociation), and ion trap mass spectrometry (ITMS). Compounds examined included adducts obtained from acid hydrolysates of Manduca sexta (tobacco hornworm) pupal cuticle exuviae and products obtained from model reactions under defined conditions. The ESMS and ITMS spectra of 6-(N-3')-histidyldopamine [6-(N-3')-His-DA, pi isomer] isolated from M. sexta cuticle were dominated by a [M + H]+ ion at m/z 308, rather than the expected m/z 307. High-resolution fast atom bombardment MS yielded an empirical formula of C14H18N3O5, which was consistent with this compound being 6-(N-1')-histidyl-2-(3, 4-dihydroxyphenyl)ethanol [6-(N-1')-His-DOPET] instead of a DA adduct. Similar results were obtained when histidyl-catechol compounds linked at C-7 of the catechol were examined; the (N-1') isomer was confirmed as a DA adduct, and the (N-3') isomer identified as an (N-1')-DOPET derivative. Direct MS analysis of unfractionated cuticle hydrolysate revealed intense parent and product ions characteristic of 6- and 7-linked adducts of histidine and DOPET. Mass spectrometric analysis of model adducts synthesized by electrochemical oxidative coupling of N-acetyldopamine (NADA) quinone and N-acetylhistidine (NAcH) identified the point of attachment in the two isomers. A prominent product ion corresponding to loss of CO2 from [M + H]+ of 2-NAcH-NADA confirmed this as being the (N-3') isomer. Loss of (H2O + CO) from 6-NAcH-NADA suggested that this adduct was the (N-1') isomer. The results support the hypothesis that insect cuticle sclerotization involves the formation of C-N cross-links between histidine residues in cuticular proteins, and both ring and side-chain carbons of three catechols: NADA, N-beta-alanyldopamine, and DOPET.  相似文献   

16.
Propylene oxide (PO) is a direct-acting mutagen and rodent carcinogen. We have studied how PO modifies 2'-deoxynucleosides at pH 7.0-7.5 and 37 degrees C for 10 h. PO reacts as an SN2 alkylating agent by forming the following 2-hydroxypropyl (HP) adducts: N6-HP-dAdo (7% yield), 7-HP-Gua (37%) and 3-HP-dThd (4%). Alkylation at N-3 of dCyd resulted in conversion of the adjacent exocyclic imino group at C-4 to an oxygen (hydrolytic deamination) with the formation of a dUrd adduct, 3-HP-dUrd (14%). Ultraviolet spectroscopy and mass spectrometry were used for the structural determination of these adducts. Confirmation of the unexpected 3-HP-dUrd adduct was provided by an accurate mass measurement technique where diagnostic ions in the mass spectra of 3-HP-dUrd were measured to within 0.0005 atomic mass units of the predicted mass. PO was reacted in vitro with calf thymus DNA (pH 7.0-7.5, 37 degrees C, 10 h) and yielded N6-HP-dAdo (1 nmol/mg DNA), 3-HP-Ade (14 nmol/mg DNA), 7-HP-Gua (133 nmol/mg DNA) and 3-HP-dUrd (13 nmol/mg DNA). A mechanism for the hydrolytic deamination of 3-HP-dCyd to 3-HP-dUrd involving the OH on the HP side chain is proposed. This cytosine to uracil conversion may play a role in the mutagenic and carcinogenic activity of this epoxide.  相似文献   

17.
N(2)- (4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N(2)-(4-hydroxyphenyl)-2'-dG (N(2)-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N(2)-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N(2)-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.  相似文献   

18.
The 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal (HNE-dGp-adducts) were quantitated in tissues of rats treated with trans-4-hydroxy-2-nonenal (HNE) or carbon tetrachloride, respectively, using a 32P-postlabeling method. The method development was based on chemically synthesized HNE-1,N2-propanodeoxyguanosine adduct standard, which was characterized by NMR and mass spectra. The adducts were enriched by Nuclease P1. They were subsequently reacted with gamma-32P-ATP to give the respective 3'-5'-bisphosphates, which were two-directionally separated on PEI-cellulose-TLC and quantitated by autoradiography. The labeling efficiency for the adduct standard was 27%, and the recovery of spiked amounts of adduct standard in the enzymatical procedure was about 80%. Internal standard was used to eliminate methodological variations. The determination of the limit of quantitation in DNA from rat tissues by spiking of HNE-dGp-adduct standard revealed a sensitivity of about 20 HNE-dGp-adducts/10(9) normal nucleotides. Background levels of HNE-dGp-adducts in tissues of rats including liver, kidney, lung, colon and forestomach were found in the range of 18-158 adducts/10(9) nucleotides with relatively high adduct levels in the liver and low adduct levels in kidney, lung and colon. These background levels were statistically significantly increased by the factor of 2 in liver, lung, colon and forestomach after induction of lipid peroxidation by carbon tetrachloride. The finding that background HNE-dGp-adduct levels may be in context with different metabolic activities of the tissues and the increase of HNE-dGp-adduct levels after application of carbon tetrachloride indicate that HNE-dGp-adducts are an endogenous lesion and that they are probably formed from radical initiated lipid peroxidation.  相似文献   

19.
N-Methyl-4-aminoazobenzene (MAB) is believed to be metabolized in the liver to an electrophilic N-sulfonyloxy ester which binds covalently to cellular macromolecules, resulting in the induction of hepatic neoplasia. Previous in vivo studies in the rat detected only two hepatic MAB-DNA adducts, 3-(deoxyguanosin-N2-yl)-MAB(N2-dG) and N-(deoxyguanosin-8-yl)-MAB(C8-dG), which respectively accounted for 25% and 70% of the total MAB bound to DNA at 8 h after a single dose of the carcinogen. Subsequently, the C8-dG adduct was shown to be rapidly lost from the DNA while the N2-dG adduct was a persistent lesion. Since a single dose of MAB is not sufficient for complete carcinogenic activity, we sought to identify the MAB-DNA adducts present in rat liver after multiple oral doses of [3H]MAB. The MAB was administered by intubation at a level of 0.2 mmol/kg for 1, 3 or 4 doses and animals were sacrificed at 8 h after the last dose. Hepatic DNA was isolated by extraction and hydroxylapatite chromatography and was enzymatically hydrolyzed to MAB-mononucleoside adducts, which were quantitated by high pressure liquid chromatography (HPLC). After 3 doses, N2-dG, C8-dG, and an unknown adduct were detected. By 4 doses, these accounted for 51%, 25% and 23% of the total adducts. This data is consistent with rapid removal of the C8-dG derivative and the relative persistence of the N2-dG and the unknown adduct. The latter was shown to exhibit chromatographic and pH-dependent solvent partitioning properties that were identical to a product also present in DNA treated with the synthetic ultimate carcinogen, N-benzoyloxy-MAB. Analysis of this adduct by field desorption mass spectrometry (M+ = 460) and, after perdeuteromethylation, by electron impact mass spectrometry (M+ = 528; M-N(CH3)(CD3) = 481) indicated the structure to be a deoxyadenosin-N6-yl derivative substituted through an aromatic ring of MAB. Further analysis by 270 MHz 1H-NMR spectroscopy allowed complete assignment of the MAB and adenyl resonances and was uniquely consistent with a 3-(deoxyadenosin-N6-yl)-MAB structure. Since this persistent adduct is potentially mutagenic due to possible tautomeric equilibria between the N6-amino and N6-imino structures, it may represent an initiating lesion in MAB hepatocarcinogenesis.  相似文献   

20.
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G(1), G(2) or G(3) of NarI sequence (5'-CCG(1)G(2)CG(3)CC-3'). Our (19)F-NMR/ICD results showed that FAAF at G(1) and G(3) prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G(2). We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G(3) and -G(1) duplexes incised more efficiently than the B-type G(2) duplex (G(3)~G(1)> G(2)). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G(2)~G(1)> G(3), a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号