首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the influence of oxygen transfer in the biosynthesis of bacitracin. The intensity of oxygen transfer within the range of 0.37 to 2.43 ml of O2 per ml per hr during growth of the inoculum has no effect. The production of bacitracin is very important in the actual fermentation phase. Oxygen transfer must not fall below the lowest limit; in the case of fermentation medium with 5 and 6% peanut meal, 0.97 and 1.39 ml of O2 per ml per hr, respectively, are the limits. Increased oxygen-transfer above the optimal value does not lead to a reduced production of bacitracin.  相似文献   

2.
Whole cells of Bacillus sp., a bacitracin-producing bacteria, were immobilized in polyacrylamide gel. The continuous production of bacitracin by an immobilized whole-cell-containing air-bubbled reactor was examined with 0.5% peptone solution. The bacitracin productivity (28 units/ml/hr) obtained with this system was higher than that with a batch system. The effluent bacitracin concentration increased with increasing aeration rate and reached a steady-state maximum above the aeration rate of 3.0 liter/min. A high bacitracin productivity was retained for at least eight days when the gel was washed with sterilized saline at a flow rate of 250 ml/hr for 2 hr once a day. The half-life of the immobilized whole-cell system was about 10 days. Bacitracin productivity by the immobilized whole-cell reactor was higher than that by a conventional continuous fermentation process at high dilution rates.  相似文献   

3.
Production of a tumor-inhibitory asparaginase by submerged fermentation with Serratia marcescens ATCC 60 was studied to ascertain optimal nutritional conditions for large-scale production leading to enzyme purification studies. Five strains of S. marcescens were screened in shake-flask studies and were found to produce 0.8 to 3.7 IU/ml 48 hr after inoculation. The requirements for asparaginase production with S. marcescens ATCC 60, the high producing strain, included the following: 4% autolyzed yeast extract medium (initial pH 5.0), an incubation temperature of 26 C, and limited aeration for a zero level of dissolved oxygen during the fermentation. Addition of various carbohydrates to the fermentation medium did not enhance yields. The peak cell population in the fermentation medium and the maximal asparaginase yields occurred simultaneously. Highest enzyme yields were found when the pH of the fermentation cycle rose to approximately 8.5. Yields of 4 IU of asparaginase/ml of cell suspension have been obtained consistently in 40 to 42 hr from 10-liter volumes (500 ml/4-liter bottle) produced on a reciprocating shaker. Scale-up to a 60-liter fermentor yielded 3.1 IU/ml in 35 hr.  相似文献   

4.
The effect of dissolved oxygen concentrations on the behavior of Serratia marcescens and on yields of asparaginase and prodigiosin produced in shaken cultures and in a 55-liter stainless-steel fermentor was studied. A range of oxygen transfer rates was obtained in 500-ml Erlenmeyer flasks by using internal, stainless-steel baffles and by varying the volume of medium per flask, and in the fermentor by high speed agitation (375 rev/min) or low rates of aeration (1.5 volumes of air per volume of broth per min), or both. Dissolved oxygen levels in the fermentation medium were measured with a membrane-type electrode. Peak yields of asparaginase were obtained in unbaffled flasks (3.0 to 3.8 IU/ml) and in the fermentor (2.7 IU/ml) when the level of dissolved oxygen in the culture medium reached zero. A low rate of oxygen transfer was accomplished by limited aeration. Production of prodigiosin required a supply of dissolved oxygen that was obtainable in baffled flasks with a high rate of oxygen transfer and in the fermentor with a combination of high-speed agitation and low-rate aeration. The fermentation proceeded at a more rapid rate and changes in pH and cell populations were accelerated by maintaining high levels of dissolved oxygen in the growth medium.  相似文献   

5.
Hindgut fermentation has been suggested to contribute significantly to the digestive process in the gelada (Theropithecus gelada). We therefore hypothesized that in an in vitro fermentation test (Hohenheim gas test, using gas production as measure of microbial digestion) inoculum based on fresh gelada feces would degrade grass to a similar degree as zebra (Equus burchelli chapmani) feces and to a higher degree than that of hamadryas baboons (Papio hamadryas). Additionally, morphology of gelada tongue, salivary glands, stomach, and intestine were examined in this study. Gas production was measured between 4 and 96 hr using animal feces incubated with 200 mg of air-dry hay or mixed concentrate sample. For grass hay, 12-hr gas production was as follows: T. gelada (19.9 ml)>Papio (18.4 ml)>Equus (15.7 ml). After 24 hr, gas production changed: Papio (35.1 ml)>T. gelada (31.9 ml)>Equus (27.9 ml). At 96 hr, Papio was unexpectedly the most effective species with the highest gas production (53.1 ml)>zebra (51.2 ml)>gelada (49.4 ml). With a concentrate standard, 12-hr gas production was as follows: T. gelada (38.5 ml)>Equus (36.8 ml) = Papio (36.4 ml). At 24 hr, gas production differed: Papio (51.7 ml)>Equus (47.0 ml) = T. gelada (46.8 ml). At 96 hr, zebra was the most effective species with the highest gas production (63.9 ml)>Papio (60 ml) = T. gelada (59.9 ml). In conclusion, the results show that the microbial population present in gelada feces is able to ferment forage and concentrate substrates in vitro, although this fermentation did not occur with the expected effectiveness. Future studies should therefore focus also on the bacteria species involved.  相似文献   

6.
By using 7 x 10(8) cells of Saccharomyces cerevisiae per ml with which 25 degrees Brix honey solutions were fermented to 9.5% (wt/vol; 12% vol/vol) ethanol in 2.5 to 3 h at 30 C, i.e., rapid fermentation, the death rate was found to be high, with only 2.1% of the yeast cells surviving at the end of 3 h under anaerobic conditions. As the dissolved oxygen in the medium was increased from 0 to 13 to 20 to 100% in rapid fermentations at 30 C, there was a progressive increase in the percentage of cells surviving. The ethanol production rate and total were not seriously affected by a dissolved oxygen concentration of 13%, but fermentation was retarded by 20% dissolved oxygen and still further decreased as the dissolved oxygen content reached 100%. When the fermentation temperature was decreased to 15 C (at 13% dissolved oxygen), the rate of fermentation decreased, and the fermentation time to 9.5% ethanol (wt/vol) increased to 6 h. It was found that the higher the temperature between 15 and 30 C, the greater the rate of death as initial cell counts were increased from 1.1 x 10(7) to 7.8 x 10(8) cells per ml. At the lowest level of inoculum, 1.1 x 10(7) cells per ml, there was actual multiplication, even at 30 C; however, the fermentation was no longer rapid. The addition of 15% sugar, initially followed after an hour by the remaining 10%, or addition of the sugar in increments of 2.5 or 5% yielded a better survival rate of yeast cells than when the fermentation was initiated with 25% sugar.  相似文献   

7.
The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; K(La) in the fermentors, 0.41 mmoles of O(2) per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content.  相似文献   

8.
A novel fermentation unit, the ejector-loop fermenter (ELF), consisting of an outer-loop tower fermenter, a centrifugal pump, a plate-heat exchanger, and a gas-liquid ejector, was designed and constructed. Aeration was achieved by continuously recirculating the fermentation medium through two different nozzle devices instead of using the traditional expensive air compressor. By carrying out a whey fermentation with Kluyveromyces fragilis as the test organism, either in the ELF or in conventional stirred fermenter, it was possible to confirm that the high sheat streses and mixing shock occurring in the ejector nozzle and diffuser sections did not affect microbial growth. Within the range of experimental power consumption per unit volume (-0.1-5 kW/m(3)), the oxygen transfer capability of the ELF per unit power input was found to vary from 1 to 2.5 kg O(2) kW(-1)h(-1). Moreover, it is shown that there is suficient room for improvement in the performance of the ELF unit by care fully designing the aeration device. In fact, at constant volumetric oxygen transfer coefficient, the power consumpotion per unit volume in a 4-mm nozzle was found to be about 40% less than that in a 6-mm nozzle.  相似文献   

9.
Conditions for the production of thermostable proteases (alkaline proteinase and carboxypeptidase) by a thermophilic streptomycete (Streptomyces rectus var. proteolyticus) were investigated in 20-liter volumes. Proteinase production was affected by the concentration of defatted soybean powder, its optimum being 1.2% in medium containing 2.0% soluble starch. Relatively high concentration of phosphate (0.3 to 0.4% K(2)HPO(4)) was needed for the maximum enzyme production. A large inoculum size (5 to 10%) was favorable, but the inoculum age did not significantly influence the production. The yield increase of 20 to 30% was obtained by feeding of medium during fermentation. The optimal temperature for proteinase production was 50 C, at which the maximal rate of production was 66.2 proteinase units per ml per hr, whereas at 40 C it was 9.0. Production at 50 C reached the maximum within 12 to 16 hr. The optimal agitation rate was different for the production of proteinase and carboxypeptidase, 400 rev/min for the former and 500 rev/min for the latter. The optimal aeration for proteinase production was 20 to 30 liters/min at 400 rev/min, whereas carboxypeptidase production was not markedly affected by aeration rate. The possibility that carboxypeptidase production was correlated with the shear of mycelium was discussed.  相似文献   

10.
Effects of oxygen toxicity on early development of mouse embryos.   总被引:8,自引:0,他引:8  
To examine the effects of oxygen toxicity on embryonic development, mouse pronuclear embryos were cultured under low oxygen conditions with or without superoxide dismutase (SOD), and the blastulation rate was compared with that of embryos cultured under standard conditions. The blastulation rate of mouse pronuclear embryos cultured under standard conditions was only 1.5% (2/131). This rate was increased significantly, to 28.5% (43/151), when the embryos were cultured under low oxygen conditions; and to 31.0% (35/113) when SOD (500 micrograms/ml) was added to the medium under standard conditions; the rate was increased to 75.2% (115/153) when the embryos were cultured under low oxygen conditions in the presence of SOD. The minimum effective concentration of SOD in the culture medium was 50 micrograms/ml under conditions of 5% O2. The blastulation rate was significantly decreased after 1-hr exposure of pronuclear embryos to room atmospheric oxygen concentration (20% O2), and subsequent culture under 5% O2 with SOD did not result in an improved blastulation rate. Culture with SOD under 5% O2 promoted the development of two-cell stage embryos to the blastocyst stage. When two-cell stage embryos were collected 48 hr after hCG and cultured for 66 hr, their blastulation rate was similar to that of embryos collected from mice 114 hr after hCG. These results suggested that embryonic development in vitro is greatly affected by atmospheric oxygen throughout the early embryonic stages and that this harmful effect can be prevented by culturing embryos under low oxygen conditions and in the presence of SOD.  相似文献   

11.
The oxygen uptakes by pieces of gut from the porcine roundworm, Ascaris suum, under Po2 10 to 710 torr were from 0.6 to 3.0 mul/mg dry wt/hr (Qo2). Increasing concentrations of tissue, 30 to 90 mg (dry wt/3 ml) decreased Qo2 in air from 1.9 to 1.1 and only technical grade catalase was found to relieve this inhibition. Conversely aerobic fermentation, judged by acid production, was directly proportional to the amount of tissue present: the acids from this fermentation were 2-methyl-butyric (1% of the total), succinic (8%), propionic (40%), and acetic (51%). Glucose did not increase Qo2 but it doubled the incorporation of labeled carbon into protein from glycine-1-14C. Judged by this, protein synthesis proceeded at the same rate under low Po2 (0.01 torr) as under air.  相似文献   

12.
用添加氧载体(油酸、豆油)、表面活性剂(Triton-X100)及H2O2的方法,改善L-苯丙氨酸发酵体系中的氧传递速率,以提高苯丙氨酸的产量。实验结果表明,在发酵0h添加1%的豆油、3%的油酸均可使产酸提高,分别可以使L-phe产量提高21.1%和39.5%;发酵0h同时加入3%油酸和0.05%Triton-X100时,提高产量78.95%;发酵12h添加0.075%H2O2,可以提高产苯丙氨酸产量18.42%。  相似文献   

13.
A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO(2)/O(2)) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 +/- 0.03 ml per min, the carbon dioxide consumption was 1.09 +/- 0.03 ml per min, and the PQ was 0.90 +/- 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel.  相似文献   

14.
The feed and feces of a continuously fed sheep were analyzed for carbon, hydrogen, and nitrogen, with oxygen as the remainder. The daily feed-feces weight difference was used as the reactant in an equation representing the rumen fermentation. The measured products were the daily production of volatile fatty acids (VFA), CH(4), CO(2), and ammonia. The carbon unaccounted for was assumed to be in the microbial cell material produced in the rumen and absorbed before reaching the feces. The ratio of C to H, O, and N in bacteria was used to represent the elemental composition of the microbes formed in the rumen fermentation, completing the following equation:C(20.03)H(36.99)O(17.406)N(1.345) + 5.65 H(2)O --> C(12)H(24)O(10.1) + 0.83 CH(4) VFA + 2.76 CO(2) + 0.50 NH(3) + C(4.44)H(8.88)O(2.35)N(0.785) microbial cells absorbed With C arbitrarily balanced and O balanced by appropriate addition of water, any error is reflected in the H. The H recovery was 98.5%. The turnover rate constant for rumen liquid equilibrating with polyethylene glycol (PEG) was 2.27 per day. Direct counts and volume measurements of the individual types of bacteria and protozoa in the rumen were used to calculate the total microbial cell volume in the rumen, not equilibrating with it. The dry matter in the rumen (582 g) and the nitrogen content (12.05) of the microbes in the rumen were estimated, the latter constituting 85% of the measured N in the rumen. Calculations for rumen dry matter and nitrogen turning over at the PEG rate introduce big discrepancies with other parameters; a rumination pool must be postulated. Its size and composition are estimated. Arguments are presented to support the view that dry matter and some of the microbes, chiefly the protozoa, do not leave the rumen at the PEG rate. One experiment with the same sheep fed twice daily showed significantly less production of microbial cells than did the continuous (each 2 hr) feeding. Analysis of the microbial cell yield suggests that, on the basis of 11 mg of cells per adenosine triphosphate molecule, a maximum of six adenosine triphosphate molecules could have been formed from each molecule of hexose fermented.  相似文献   

15.
1. Under controlled conditions, the rate of oxygen consumption (VO2) respiratory frequency, evaporative water loss, heat balance, rectal (Trec) and surface temperatures were determined in the dik-dik antelopes at ambient temperatures (Ta) ranging from 1 to 44 degrees C. 2. The thermal neutral zone was found to be between 24 and 35 degrees C. 3. Respiratory frequency ranged between 27 and 630 breaths/min. 4. At a Ta of 44 degrees C, 95% of the heat produced by the dik-dik was lost via respiratory evaporation. Despite an increase in Trec, cutaneous evaporation did not increase. 5. During panting, VO2 increased in accordance with the expected Q10 effect, contrary to earlier findings. 6. Measurements of circadian rhythm [LD 12:12 (7-19) CT26 degrees C] in VO2 showed that the minimum VO2 (0.42 ml O2/g/hr) occurred at midnight while the maximum (0.78 ml O2/g/hr) occurred at midday. The 24 hr mean VO2 was 0.61 ml O2/g/hr. 7. These measurements suggest that in nature, determinants other than light may be responsible for triggering the variations observed in VO2.  相似文献   

16.
Production of 2-Ketogluconic Acid by Serratia marcescens   总被引:4,自引:0,他引:4       下载免费PDF全文
Production of 2-ketogluconic acid from glucose by fermentation with Serratia marcescens NRRL B-486 was studied in 20-liter stainless-steel fermentors. Conditions for 2-ketogluconic acid production included the following: glucose-salt medium, aeration rate of 0.75 volumes per volume per minute, agitation rate of 400 rev/min, temperature of 30 C, CaCO3 to neutralize the acid formed, and a 5% (v/v) inoculum. Foaming was controlled with an antifoam agent added at intervals during the fermentation. When 120 g per liter of glucose were supplied, 95 to 100% yields of 2-ketogluconic acid were obtained in 16 hr. Larger amounts of glucose could be used in the fermentation provided that the carbohydrate was fed continuously. Continuous feeding of glucose to a total amount of 180 g per liter gave 95 to 100% yields of 2-ketogluconic acid in 24 hr; feeding glucose to a total amount of 240 g per liter gave 85 to 90% yields in 32 to 40 hr.  相似文献   

17.
Previously we reported that mice infected recurrently with live Fusobacterim nucleatum (Fn) synthesize a significant amount of NO between 12 hr and 24 hr after the Fn injection. We now investigated whether the NO has the capability of killing Fn, a gram-negative rod periodontal pathogen. The mice were divided into three groups: treated with live bacteria (LB), treated with heat-killed bacteria (HKB) and untreated: normal (N). The Fn reduction, NO production and cell number after Fn injection were then compared in these mice. In the LB group, no Fn was detected at 6 hr, whereas it was still detected in the HKB and N groups at 24 hr as assessed by both colony counts and PCR assays. A significant amount of NO was synthesized in the LB group at 24 hr after the Fn injection. Fn is not killed by SNAP-generated NO in vitro. An increase in the total cell number was accompanied by an increase of the neutrophil numbers in the LB group. Intracellular O2(-) generation (including ONOO(-)) was visualized using dihydrorhodamine (DHR)-123. The peak of O2(-) generation by PEC was shown to be at 3 hr in all 3 groups. The number of O2(-) positive cells in the LB group at 3 hr was remarkably high, and most of them were likely to be neutrophils. The Fn reduction would be performed cooperatively via oxygen dependent and oxygen independent mechanisms. Thus reactive oxygen species (ROS) included in the oxygen dependent mechanism appear to be important for Fn reduction. However the significant amounts of NO derived from the iNOS synthesized in the LB group between 12 hr and 24 hr after injection of LFn were not involved in the Fn reduction.  相似文献   

18.
We have investigated that atmospheric stability in polystyrene and glass cell culture vessels by measuring the dissolved O2 and CO2 in the media of both seeded and unseeded culture vessels incubated at 37 degrees C. There was no diffusion of either O2 or CO2 through glass vessels. At low partial pressures of oxygen (PO2), oxygen diffused into the polystyrene flasks at a rate of 1 to 2 mmHg per 24 hr, and at high PO2, oxygen diffused slowly out of polystyrene flasks. CO2 diffused out of polystyrene flasks with a half-time of 260 hr resulting in a considerable elevation in pH. In seeded polystyrene flasks with the PO2 less than or equal to room air, cellular oxygen consumption was masked by the inward diffusion of oxygen. In addition, the fall in pH due to metabolic CO2 and organic acid production during cell growth in polystyrene flasks was buffered by the diffusion of CO2 out of the vessels.  相似文献   

19.
Results of pilot plant studies using an external-loop airlift bioreactor (170 l fermentation volume, liquid height-to-riser diameter: 27, loop-to-tower cross-section-area: 0.1225) have proven the relative merits of such a system in the bacitracin biosynthesis produced by the Bacillus licheniformis submerged aerobic cultivation. The results were compared to those obtained in a pilot-scale stirred-tank bioreactor with the same values of kLa. Excepting the aeration rate of 0.2 vvm, the fermentation process performed at 0.5 vvm and 1/0 vvm, respectively, unfolded similarly in the two fermentation devices with respect to the cell mass production, substrate utilization and bacitracin production during the fermentation process. In the riser section of the airlift bioreactor, the dissolved oxygen levels were higher, while in the downcomer section they were lower than those realized in the stirred tank bioreactor. Power requirements of the airlift fermenter were by 17–64% lower than those for a mechanically agitated system, depending on the aeration rates, which led to an important energy saving. Moreover, the lack of mechanical devices in the airlift system provides safety and a more gentle environment for the cultivation of microorganisms.  相似文献   

20.
Farrar, W. Edmund, Jr. (Walter Reed Army Institute of Research, Washington, D.C.), Thomas H. Kent, and Van B. Elliott. Lethal gram-negative bacterial superinfection in guinea pigs given bacitracin. J. Bacteriol. 92:496-501. 1966.-Oral administration of a single dose of bacitracin (either 2,000 or 10,000 units) was lethal to more than 80% of guinea pigs. Within the first 12 hr, there was a 2,000-fold fall in the number of gram-positive organisms in the cecum. An increase in the number of coliform bacteria in the cecum was demonstrable within 6 hr, and, by 48 hr, these organisms had increased from the normal level of less than 100 per gram to approximately 1 billion per gram. The changes in intestinal bacterial flora were associated with development of a severe cecitis, mild ileitis, and acute regional lymphadenitis. Bacteremia, primarily due to coliform bacteria, was demonstrated in approximately 40% of the animals killed between 72 and 96 hr after administration of bacitracin. Development of this disease syndrome was suppressed by the administration of neomycin and polymyxin B, nonabsorbable antibiotics effective against coliform bacteria. The lethal disease produced by bacitracin in the guinea pig is similar to that produced by penicillin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号