首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic mice that contain the simian virus 40 (SV40) enhancer-promoter and large tumor (T) antigen gene develop papillomas of the choroid plexus. The tumors remain well differentiated on histological examination and express normal levels of tissue-specific mRNAs for transthyretin (TTR) and the 5-HT1C serotonin receptor, two differentiated cell markers. Both Northern (RNA) blot analysis and in situ cytohybridization have been used to monitor the steady-state levels of the mRNAs from the viral oncogene (T antigen) and from several cellular oncogenes. In situ hybridization demonstrated, in serial sections, increased levels of both T antigen mRNA and p53 mRNA localized in the tumor tissue but not in the normal brain tissue. The ratios of the steady-state levels of mRNA for p53/TTR and p53/L32, a ribosomal protein gene, were 2- to 20-fold higher in the tumor tissue than in the normal choroid plexus tissue. Several other oncogenes did not show elevated levels of mRNA in these tumors. p53 protein levels were not detectable in normal brain tissue, but p53 levels were very high in tumor tissue in which all of the p53 was found in a complex with the SV40 large T antigen. These data continue to show a close relationship between SV40 T-antigen-mediated tumorigenesis and the role of p53 in these tumors.  相似文献   

2.
An expression vector utilizing the enhancer and promoter region of the simian virus 40 (SV40) DNA regulating a murine p53 cDNA clone was constructed. The vector produced murine p53 protein in monkey cells identified by five different monoclonal antibodies, three of which were specific for the murine form of p53. The murine p53 produced in monkey cells formed an oligomeric protein complex with the SV40 large tumor antigen. A large number of deletion mutations, in-frame linker insertion mutations, and linker insertion mutations resulting in a frameshift mutation were constructed in the cDNA coding portion of the p53 protein expression vector. The wild-type and mutant p53 cDNA vectors were expressed in monkey cells producing the SV40 large T antigen. The conformation and levels of p53 protein and its ability to form protein complexes with the SV40 T antigen were determined by using five different monoclonal antibodies with quite distinct epitope recognition sites. Insertion mutations between amino acid residues 123 and 215 (of a total of 390 amino acids) eliminated the ability of murine p53 to bind to the SV40 large T antigen. Deletion (at amino acids 11 through 33) and insertion mutations (amino acids 222 through 344) located on either side of this T-antigen-binding protein domain produced a murine p53 protein that bound to the SV40 large T antigen. The same five insertion mutations that failed to bind with the SV40 large T antigen also failed to react with a specific monoclonal antibody, PAb246. In contrast, six additional deletion and insertion mutations that produced p53 protein that did bind with T antigen were each recognized by PAb246. The proposed epitope for PAb246 has been mapped adjacent (amino acids 88 through 109) to the T-antigen-binding domain (amino acids 123 through 215) localized by the mutations mapped in this study. Finally, some insertion mutations that produced a protein that failed to bind to the SV40 T antigen appeared to have an enhanced ability to complex with a 68-kilodalton cellular protein in monkey cells.  相似文献   

3.
The simian B-lymphotropic papovavirus (LPV) encodes a large tumor antigen (T antigen) which is 45% identical to both the simian virus 40 (SV40) and the polyomavirus (PyV) large T antigens. In transgenic mice, the transforming properties of the LPV T antigen are similar to those of the SV40 T antigen. However, little is known about its biochemical activities. Since SV40 T antigen forms a complex with and stabilizes the host cell tumor suppressor protein p53 while the PyV large T antigen does not, we characterized the LPV T antigen for its ability to complex p53. We demonstrate an association between LPV T antigen and p53 in both a tumor-derived cell line and BALB/c 3T3 cells transformed in culture. A third protein of approximately 68 kDa which was found associated with the LPV T antigen-p53 complex in tumor-derived cells appears to be heat shock protein 70 (hsp70). The half-life of p53 in all LPV T-antigen-transformed cells was extended significantly; i.e., it was 3 to 7 h compared with 19 minutes in BALB/c 3T3 cells. The half-life of the LPV T antigen itself was 5 to 9 h depending on the cell line origin. That p53 was stabilized because of association with LPV T antigen and not because of mutation was demonstrated with the p53 conformation-dependent monoclonal antibody PAb246. This antibody distinguishes between wild-type p53 (PAb246+) and mutant, oncogenic p53 (PAb246-). Sequential immunoprecipitation showed all detectable p53 to be of the PAb246+ class in each LPV-transformed cell line, suggesting that the stable p53 was indeed wild type.  相似文献   

4.
J V Gannon  R Greaves  R Iggo    D P Lane 《The EMBO journal》1990,9(5):1595-1602
Point mutations in the p53 gene are the most frequently identified genetic change in human cancer. They convert murine p53 from a tumour suppressor gene into a dominant transforming oncogene able to immortalize primary cells and bring about full transformation in combination with an activated ras gene. In both the human and murine systems the mutations lie in regions of p53 conserved from man to Xenopus. We have developed a monoclonal antibody to p53 designated PAb240 which does not immunoprecipitate wild type p53. A series of different p53 mutants all react more strongly with PAb240 than with PAb246. The PAb240 reactive form of p53 cannot bind to SV40 large T antigen but does bind to HSP70. In contrast, the PAb246 form binds to T antigen but not to HSP70. PAb240 recognizes all forms of p53 when they are denatured. It reacts with all mammalian p53 and chicken p53 in immunoblots. We propose that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggest that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein. This conformational change abolishes T antigen binding and promotes self-oligomerization. These results are consistent with a dominant negative model where mutant p53 protein binds to and neutralizes the activity of p53 in the wild type conformation.  相似文献   

5.
The simian virus 40 (SV40) large tumor antigen (T antigen) under its natural regulatory elements induces choroid plexus papillomas in transgenic mice. Because these tumors develop focally after several months, it has been suggested that secondary cellular alterations are required to induce a tumor in this tissue. In contrast to SV40, the related lymphotropic papovavirus early region induces rapid nonfocal choroid plexus neoplasia in transgenic mice. Here, using hybrid gene constructs, we showed that T antigen from either virus in in fact sufficient to induce these tumors. Their abilities to induce proliferative abnormalities in other tissues, such as kidney and thymus, were also indistinguishable. Differences in the rate of choroid plexus tumorigenesis reflected differences in the control regions of the two viruses, rather than differences in T antigen per se. Under SV40 regulation, expression was limited to a fraction of the choroid plexus cells prior to the formation of focal tumors. When SV40 T antigen was placed under lymphotropic papovavirus control, in contrast, expression was generally uniform in the choroid plexus and rapid expansion of the tissue ensued. We found a direct relationship between T-antigen expression, morphological transformation, and proliferation of the choroid plexus epithelial cells. Analysis of mosaic transgenic mice indicated further that T antigen exerts its mitogenic effect cell autonomously. These studies form the foundation for elucidating the role of various T-antigen subactivities in tumorigenesis.  相似文献   

6.
Two mutations were introduced into the wild-type mouse p53 gene by oligonucleotide-directed mutagenesis. These mutations substituted alanine or aspartic acid for serine at position 312, which is constitutively phosphorylated. Phosphopeptide mapping of the mutant proteins, expressed in COS cells, confirmed the loss of phosphorylation at position 312. There were no changes in the ability of the mutant p53s to express the conformation-dependent epitope for monoclonal antibody PAb246 or to participate in complexes with the simian virus 40 (SV40) large T antigen. Replication of a plasmid containing the SV40 origin of replication was inhibited in COS cells by wild-type p53 and both of the phosphorylation site mutants with equal efficiency. A transforming mutant of p53, encoding valine at position 135, did not inhibit SV40 DNA replication in COS cells.  相似文献   

7.
Simian virus 40 large T antigen transforms cells by sequestration and inactivation of the tumor suppressor proteins p53, retinoblastoma gene product (pRb), and the pRb-related proteins p107 and p130. Thus, the absence of functional p53 is expected to promote T antigen-mediated tumorigenesis. However, in a transgenic mouse model of T antigen-mediated beta cell carcinogenesis (Rip1Tag2), tumor volumes are significantly diminished when these mice are intercrossed with p53-deficient mice. Whereas the incidence of beta tumor cell apoptosis is unaffected, their proliferation rate is reduced in p53-deficient beta cell tumors in vivo and in cell lines established from these tumors in vitro. Biochemical analyses reveal higher levels of T antigen in wild-type tumor cells as compared to p53-deficient tumor cells. The data indicate that p53 stabilizes SV40 large T antigen, thereby augmenting its oncogenic potential as manifested by increased proliferation rates in wild-type beta tumor cells as compared to p53-deficient beta tumor cells.  相似文献   

8.
S D Conzen  C A Snay    C N Cole 《Journal of virology》1997,71(6):4536-4543
The ability of DNA tumor virus proteins to trigger apoptosis in mammalian cells is well established. For example, transgenic expression of a simian virus 40 (SV40) T-antigen N-terminal fragment (N-termTag) is known to induce apoptosis in choroid plexus epithelial cells. SV40 T-antigen-induced apoptosis has generally been considered to be a p53-dependent event because cell death in the brain is greatly diminished in a p53-/- background strain and is abrogated by expression of wild-type (p53-binding) SV40 T antigen. We now show that while N-termTags triggered apoptosis in rat embryo fibroblasts cultured in low serum, expression of full-length T antigens unable to bind p53 [mut(p53-)Tags] protected against apoptosis without causing transformation. One domain essential for blocking apoptosis by T antigen was mapped to amino acids 525 to 541. This domain has >60% homology with a domain of adenovirus type 5 E1B 19K required to prevent E1A-induced apoptosis. In the context of both wild-type T antigen and mut(p53-)Tags, mutation of two conserved amino acids in this region eliminated T antigen's antiapoptotic activity in REF-52 cells. These data suggest that SV40 T antigen contains a novel functional domain involved in preventing apoptosis independently of inactivation of p53.  相似文献   

9.
10.
Analysis of a protein-binding domain of p53.   总被引:11,自引:4,他引:7       下载免费PDF全文
The tumor suppressor protein p53 was first isolated as a simian virus 40 large T antigen-associated protein and subsequently was found to function in cell proliferation control. Tumor-derived mutations in p53 occur predominantly in four evolutionarily conserved regions spanning approximately 50% of the polypeptide. Previously, three of these regions were identified as essential for T-antigen binding. We have examined the interaction between p53 and T antigen by using Escherichia coli-expressed human p53. By a combination of deletion analysis and antibody inhibition studies, a region of p53 that is both necessary and sufficient for binding to T antigen has been localized. This function is contained within residues 94 to 293, which include the four conserved regions affected by mutation in tumors. Residues 94 to 293 of p53 were expressed in both wild-type and mutant forms. T-antigen binding was unaffected by tumor-derived mutations which have been associated with the wild-type conformation of p53 but was greatly reduced by mutations which were previously shown to alter p53 conformation. Our results show that, like T-antigen binding to the Rb tumor suppressor protein, T antigen appears to interact with the domain of p53 that is commonly mutated in human tumors.  相似文献   

11.
12.
The ability of simian virus 40-encoded large T antigen to disrupt the growth control of a variety of cell types is related to its ability to interfere with certain cellular proteins, such as p53 and the retinoblastoma susceptibility gene product (pRB). We have used wild-type and mutant forms of T antigen in transgenic mice to dissect the roles of pRB, p53, and other cellular proteins in tumorigenesis of different cell types. In this study, using a cell-specific promoter to target expression specifically to brain epithelium (the choroid plexus) and to B and T lymphoid cells, we characterize the tumorigenic capacity of a T-antigen fragment that comprises only the amino-terminal 121 residues. This fragment (dl1137) retains the ability to interact with pRB and p107 but lacks the p53-binding domain. While loss of the p53-binding region results in loss of the capacity to induce lymphoid abnormalities, dl1137 retains the ability to induce choroid plexus tumors that are histologically indistinguishable from those induced by wild-type T antigen. Tumors induced by dl1137 develop much more slowly, however, reaching an end point at around 8 months of age rather than at 1 to 2 months. Analysis of tumor progression indicates that tumor induction by dl1137 does not require secondary genetic or epigenetic events. Rather, the tumor growth rate is significantly slowed, indicating that the T-antigen C-terminal region contributes to tumor progression in this cell type. In contrast, the pRB-binding region appears essential for tumorigenesis as mutation of residue 107, known to disrupt pRB and p107 binding to wild-type T antigen, abolishes the ability of the dl1137 protein to induce growth abnormalities in the brain.  相似文献   

13.
A line of transgenic mice containing the simian virus 40 (SV40) large tumor antigen gene under the control of the viral enhancer-promoter expressed this viral protein in the brains of these mice within the first 2 weeks after birth. Multiple foci of anaplastic cells formed in the choroid plexuses of these mice at 36 to 41 days after birth, and normal tissue coexisted with these transformed foci. Immunoperoxidase staining to detect the SV40 T antigen showed tumor-specific expression of nuclear T antigen at late times in tumor development, approximately 90 to 100 days and thereafter. The level of SV40 T antigen, on a per cell basis, appeared to be lower in the great majority of choroid plexus cells at earlier times in tumor development. These results suggest that low levels of tumor antigen (14 to 36 days) are present before detectable pathology (36 to 41 days) and the level of T antigen per cell is higher in rapidly growing late-stage tumors (older than 90 days).  相似文献   

14.
In human fibroblasts, growth arrest at the end of the normal proliferative life span (induction of senescence) is dependent on the activity of the tumor suppressor protein p53. In contrast, once senescence has been established, it is generally accepted that reinitiation of DNA synthesis requires loss of multiple suppressor pathways, for example, by expression of Simian virus 40 (SV40) large T antigen, and that even this will not induce complete cell cycle traverse. Here we have used microinjection of monoclonal antibodies to the N terminus of p53, PAb1801 and DO-1, to reinvestigate the effect of blocking p53 function in senescent human fibroblasts. Unexpectedly, we found that both antibodies induce senescent cells to reenter S phase almost as efficiently as SV40, accompanied by a reversion to the “young” morphology. Furthermore, this is followed by completion of the cell division cycle, as shown by the appearance of mitoses, and by a four- to fivefold increase in cell number 9 days after injection. Immunofluorescence analysis showed that expression of the p53-inducible cyclin/kinase inhibitor p21sdi1/WAF1 was greatly diminished by targeting p53 with either PAb1801 or DO-1 but remained high and, moreover, still p53 dependent in cells expressing SV40 T antigen. As previously observed for induction, the maintenance of fibroblast senescence therefore appears to be critically dependent on functional p53. We suggest that the previous failure to observe this by using SV40 T-antigen mutants to target p53 was most probably due to incomplete abrogation of p53 function.  相似文献   

15.
The p53 gene is a suppressor of abnormal cell growth but is also subject to oncogenic activation by mutation. The mutant allele p53-Val135, has recently been discovered to be temperature-sensitive and functions as an oncogene at 37 degrees C and as a tumor suppressor at 32.5 degrees C. In order to investigate the molecular mechanism underlying the temperature sensitivity of p53-Val135 rabbit reticulocyte lysate was used to translate the p53 mRNAs in vitro at 37 degrees C and at 30 degrees C. The immunoreactivity and T antigen binding of wild-type protein p53-Ala135 were unaffected by temperature and were similar to wild-type p53 expressed in vivo. In contrast, the mutant p53-Val135 protein was markedly affected by temperature. At 37 degrees C p53-Val135 showed reduced T antigen binding and did not react with monoclonal antibodies PAb246 and PAb1620. At 30 degrees C, p53-Val135 behaved as the wild-type p53. Temperature also exerted a post-translational effect on p53-Val135 with complete conversion from wild-type to mutant phenotype within two minutes of temperature shift from 30 degrees C to 37 degrees C. There was incomplete conversion from mutant to wild-type phenotype when the temperature was shifted down from 37 degrees C to 30 degrees C. We propose that the temperature dependent forms of p53-Val135 represent conformational variants of the p53 protein with opposing functions in cell growth control.  相似文献   

16.
F Tiemann  J Zerrahn    W Deppert 《Journal of virology》1995,69(10):6115-6121
Metabolic stabilization of the tumor suppressor p53 is a key event in cellular transformation by simian virus 40 (SV40). Expression of the SV40 large tumor antigen (large T) is necessary but not sufficient for this process, as metabolic stabilization of p53 complexed to large T in abortively SV40-infected cells strictly depends on the cellular systems analyzed (F. Tiemann and W. Deppert, J. Virol. 68:2869-2878, 1994). Comparative analyses of various cells differing in metabolic stabilization of p53 upon abortive infection with SV40 revealed that metabolic stabilization of p53 closely correlated with expression of the SV40 small t antigen (small t) in these cells: 3T3 cells do not express small t and do not stabilize p53 upon infection with wild-type SV40. However, ectopic expression of small t in 3T3 cells provided these cells with the capacity to stabilize p53 upon SV40 infection. Conversely, precrisis mouse embryo cells express small t and mediate metabolic stabilization of p53 upon infection with wild-type SV40. Infection of these cells with an SV40 small-t deletion mutant did not lead to metabolic stabilization of p53. Small-t expression and metabolic stabilization of p53 correlated with an enhanced transformation efficiency by SV40, supporting the conclusion that at least part of the documented helper effect of small t in SV40 transformation is its ability to promote metabolic stabilization of p53 complexed to large T.  相似文献   

17.
SV40 large T antigen associates with a cellular phosphoprotein, p53, in virus-transformed cells. We have raised three new monoclonal antibodies, PAb1101, PAb1102 and PAb1103, to this cellular protein, derived from SV40-transformed human fibroblasts. These define at least two non-overlapping determinants on human p53 that are in different areas of the molecule from those recognised by previously available antibodies. Unlike those antibodies, PAb1102 and PAb1103 do not react with rodent p53. PAb1101 reacts far more weakly with rodent p53 than with primate p53. All three antibodies show a preference for binding to the large T-associated form of p53, an effect that is particularly marked with PAb1102. The novel specificity of these antibodies allows further probing of the nature and function of the large T/p53 complex in human cells.  相似文献   

18.
Newly synthesized simian virus 40 large tumor antigen (T Ag) slowly forms a stable complex with the host tumor antigen, "p53." By the use of immunological and temporal separations and inhibition of aggregation and processing by A locus mutation, we have distinguished specific steps in the reaction sequence leading to formation of the rapidly sedimenting oligomeric complex. The monoclonal antibody PAb101 bound only a fraction of the total soluble pulse-labeled T Ag bound by antitumor serum. After a chase, all T Ag had matured to the form recognized by PAb101. All p53 in the mouse line SVA31E7 was precipitated by the T Ag-specific monoclonal antibody PAb101, even after a short pulse, and is therefore entirely bound to mature T Ag. The p53-specific monoclonal antibody PAb122 precipitates nearly all of the mature T Ag recognized by PAb101, except A locus mutant T Ag, synthesized at the nonpermissive temperature. A locus mutation inhibited entry of newly synthesized T Ag into the oligomeric greater than 28S complex of T Ag and p53.  相似文献   

19.
The simian virus 40 large T antigen induces tumors in a wide variety of tissues in transgenic mice, the precise tissues depending on the tissue specificity of the upstream region controlling T-antigen expression. Expression of mutant T antigens that contain a subset of the protein's activities restricts the spectrum of tumors induced. Others showed previously that expression of a mutant large T antigen containing the N-terminal 121 amino acids (T1-121) under control of the lymphotropic papovavirus promoter resulted in slow-growing choroid plexus tumors, whereas full-length T antigen under the same promoter induced rapidly growing CPR tumors, T-cell lymphomas, and B-cell lymphomas. In those instances, the alteration in tumor induction or progression correlated with inability of the mutant large T antigen to bind the tumor suppressor p53. In the study reported here, we investigated the capacity of an N-terminal T antigen segment (T1-127) expressed in conjunction with small t antigen under control of the rat elastase-1 (E1) promoter to induce pancreatic tumors. The results show that pancreases of transgenic mice expressing T1-127 and small t antigen display acinar cell dysplasia at birth that progresses to neoplasia. The average age to death in these mice is within the range reported for transgenic mice expressing full-length T antigen under control of the E1 promoter. These results indicate that sequestering p53 by binding is not required for the development of rapidly growing acinar cell carcinomas. In addition, we provide evidence that small t antigen is unlikely to be required. Finally, we show that the p53 protein in acinar cell carcinomas is wild type in conformation.  相似文献   

20.
T cell immunotherapy is a potential strategy for the treatment of brain tumors because it offers a high degree of specificity, the ability to extravasate into solid tumors, and the potential for eliciting a long-term protective immune response. Various approaches have been developed to overcome T cell immune tolerance to cancer, including the use of cytokines and bispecific antibodies. T cell stimulation with the proinflammatory cytokine IL-12 can elicit antitumor immunity. T cell activation can be increased using bispecific antibodies against activating molecules on the surface of T cells and a tumor antigen. We studied the effects of systemic IL-12 administration in combination with a conjugate of an anti-CD28 antibody and a ligand for the folate receptor. The high affinity folate receptor is expressed on endogenously arising choroid plexus tumors of SV11 mice, which are transgenic for large T antigen under the control of the SV40 promoter. SV11 mice are immunocompetent, yet immunologically tolerant to large T antigen expressed by choroid plexus tumors. MRI analysis showed that the administration of IL-12 and anti-CD28 Fab/folate significantly slowed tumor growth. Proliferating CD8(+) T cells were found in choroid plexus tumors of treated animals. Treatment of animals with IL-12 + anti-CD28 Fab/folate prolonged survival compared to IL-12 alone. Cytokine treatment combined with tumor-targeted costimulation may be a useful adjunct treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号