首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Operator mutations of the Escherichia coli aroF gene   总被引:17,自引:0,他引:17  
  相似文献   

2.
Regulatory mutants of the aroF-tyrA operon of Escherichia coli K-12.   总被引:11,自引:10,他引:1       下载免费PDF全文
The regulatory region of the aroF-tyrA operon was fused to the chloramphenicol acetyltransferase (cat) gene on a plasmid vector. Expression of the cat gene was subject to repression by tyrR+. This fusion was used to isolate regulatory mutants with increased expression of the cat gene in which repression by tyrR+ was affected. Nucleotide sequencing of these mutants has led to the identification of three sites involved in the repression of aroF by tyrR+. The existence of a functional promoter divergently transcribing from the aroF regulatory region was also demonstrated by using the cat fusion vector. The expression of this promoter is also regulated by tyrR+.  相似文献   

3.
4.
5.
SV40 gene expression is modulated by the cooperative binding of T antigen to DNA   总被引:102,自引:0,他引:102  
R M Myers  D C Rio  A K Robbins  R Tjian 《Cell》1981,25(2):373-384
  相似文献   

6.
7.
8.
9.
Mutations were introduced in 7 kilobases of 5'-flanking rat alpha 1-fetoprotein (AFP) genomic DNA, linked to the chloramphenicol acetyltransferase gene. AFP promoter activity and its repression by a glucocorticoid hormone were assessed by stable and transient expression assays. Stable transfection assays were more sensitive and accurate than transient expression assays in a Morris 7777 rat hepatoma recipient (Hepa7.6), selected for its strong AFP repression by dexamethasone. The segment of DNA encompassing a hepatocyte-constitutive chromatin DNase I-hypersensitive site at -3.7 kilobases and a liver developmental stage-specific site at -2.5 kilobases contains interacting enhancer elements sufficient for high AFP promoter activity in Hepa7.6 or HepG2 cells. Deletions and point mutations define an upstream promoter domain of AFP gene activation, operating with at least three distinct promoter-activating elements, PEI at -65 base pairs, PEII at -120 base pairs, and DE at -160 base pairs. PEI and PEII share homologies with albumin promoter sequences, PEII is a near-consensus nuclear factor I recognition sequence, and DE overlaps a glucocorticoid receptor recognition sequence. An element conferring glucocorticoid repression of AFP gene activity is located in the upstream AFP promoter domain. Receptor-binding assays indicate that this element is the glucocorticoid receptor recognition sequence which overlaps with promoter-activating element DE.  相似文献   

10.
Expression of the nrd genes was previously shown to be controlled by both positive and negative regulation (C. K. Tuggle and J. A. Fuchs, EMBO J. 5:1077-1085, 1986). Two regions, one located 5' and one located 3' of the nrd promoter (nrdP), were identified as negative regulatory sites since deletion of these sequences increased nrd expression. These regions of DNA have sequence similarities, and a looping mechanism was proposed to explain the requirement for two distinct sites in nrd repression. To investigate the role of these sequences in regulating nrd, a gel electrophoresis assay was used to detect the proteins that bind to the nrd regulatory sites. A protein that bound to restriction fragments containing the negative regulatory sites but not to other DNA fragments was identified in cell extracts and was partially purified. DNase I footprinting experiments showed that the binding protein protects the 5' negative site previously identified in vivo. The 3' negative site also identified in vivo was not required in vitro for high-affinity protein binding to the 5' site, but lower-affinity binding to this site could be detected. Specific binding to the 5' site was found to be elevated approximately 10-fold in crude extracts from thymine-starved cells as compared with that in extracts from unstarved cells. This higher activity was also evident in purified preparations, suggesting that thymine starvation increases the expression of the negative regulatory protein. The finding that a purified protein preparation binds both negative regulatory sites indicates that this preparation contains the nrd repressor protein or proteins. Insertion of 37 base pairs (3.5 helix turns) of DNA at a HpaII site or 35 base pairs (3.3 turns) at a MnlI site between the 5' regulatory sites and nrdP abolished the increase in nrd expression resulting from thymine starvation in vivo, but negative regulation appeared to be less affected than when either negative site was deleted. Insertion of DNA in these constructs was shown not to affect repressor binding in vitro, indicating either that a simple model of DNA looping to bring equivalent operator sites into physical proximity does not explain repression at nrd or that the distance between sites is sufficient that helical turns are of little importance.  相似文献   

11.
12.
13.
We show here, both in vivo and in vitro, that P22 repressor binds co-operatively to operator sites separated by an integral number of turns of the DNA helix. We measure this co-operativity in vivo using an assay in which repression of a promoter requires co-operative binding of P22 repressors to two separated (non-adjacent) operator sites. We report the isolation of mutant repressors that have high affinity for single operator sites, but are defective in co-operative binding. Six different mutants, all bearing single amino acid changes in the carboxyl domain, have been isolated. We purified the two mutants most deficient in co-operative binding, and found that they bind non-co-operatively in vitro to adjacent as well as to non-adjacent pairs of operator sites.  相似文献   

14.
The Escherichia coli lactose (lac) operon encodes the first genetic switch to be discovered, and lac remains a paradigm for studying negative and positive control of gene expression. Negative control is believed to involve competition of RNA polymerase and Lac repressor for overlapping binding sites. Contributions to the local Lac repressor concentration come from free repressor and repressor delivered to the operator from remote auxiliary operators by DNA looping. Long-standing questions persist concerning the actual role of DNA looping in the mechanism of promoter repression. Here, we use experiments in living bacteria to resolve four of these questions. We show that the distance dependence of repression enhancement is comparable for upstream and downstream auxiliary operators, confirming the hypothesis that repressor concentration increase is the principal mechanism of repression loops. We find that as few as four turns of DNA can be constrained in a stable loop by Lac repressor. We show that RNA polymerase is not trapped at repressed promoters. Finally, we show that constraining a promoter in a tight DNA loop is sufficient for repression even when promoter and operator do not overlap.  相似文献   

15.
16.
17.
Plasmid constructs containing a wild-type (O+) lac operator upstream of an operator-constitutive (Oc) lac control element exhibit a length-dependent, oscillatory pattern of repression of expression of the regulated gene as interoperator spacing is varied from 115 to 177 base pairs (bp). Both the length dependence and the periodicity of repression are consistent with a thermodynamic model involving a stable looped complex in which bidentate lac repressor interacts simultaneously with both O+ and Oc operators. The oscillatory pattern of repression with distance occurs with a period approximating the helical repeat of DNA and presumably reflects the necessity for proper alignment of interacting operators along the helical face of the DNA. In the length regime examined, the presence of the upstream operator enhances repression between 6-fold and 50-fold depending upon phasing. This reflects a torsional rigidity of DNA in vivo that is consistent with in vitro measurements. The oscillatory pattern of repression is best fit with a period of either 9.0 or 11.7 bp/cycle but not 10.5 bp/cycle. This periodicity is interpreted as reflecting the average helical repeat of the 40-bp interoperator region of plasmid DNA in vivo, suggesting that the local helical repeat of DNA in vivo may differ significantly from 10.5 bp/turn. The apparent persistence length needed to fit the data (aapp) is only one-fifth the standard in vitro value. This low value of aapp may be due in part to DNA bending induced by catabolite activator protein (CAP) bound to its site between the interacting operators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
We have studied the binding of the CAP protein to an 18 base pair lac promoter sequence comprising the core of the CAP recognition sequence. Specific binding of this sequence was established by competition binding assays and comparison of the relative affinities of a number of lac promoter, lac operator, and unspecific sequences of different lengths. The effect of the binding of CAP to the 18 base pair promoter sequence and, for comparison, to an 18 base pair symmetric operator and an oligonucleotide of unrelated sequence have been studied by 1H NMR. Binding of CAP does not bring about any changes in the chemical shift values of the imino proton resonances of the DNA, but causes the selective line broadening of two of the resonances. The comparison of these data with results of gel retardation assays published previously (1) allows the identification and localization of a kink induced in the DNA by the CAP binding to its specific site on the lac promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号