首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The carbon isotope composition of an animals breath reveals the composition of the nutrients that it catabolizes for energy. Here we describe the use of Keeling plots, a method widely applied in ecosystem ecology, to measure the 13C of respired CO2 of small vertebrates. We measured the 13C of Rufous Hummingbirds (Selasphorus rufus) in the laboratory and of Mourning (Zenaida macroura) and White-winged (Z. asiatica) Doves in the field. In the laboratory, when hummingbirds were fed a sucrose based C3 diet, the 13C of respired CO2 was not significantly different from that of their diet (13CC3 diet). The 13C of respired CO2 for C3 fasted birds was slightly, albeit significantly, depleted in 13C relative to 13CC3 diet. Six hours after birds were shifted to a sucrose based C4 diet, the isotopic composition of their breath revealed that birds were catabolizing a mixture of nutrients derived from both the C3 and the C4 diet. In the field, the 13C of respired CO2 from Mourning and White-winged Doves reflected that of their diets: the CAM saguaro cactus (Carnegeia gigantea) and C3 seeds, respectively. Keeling plots are an easy, effective and inexpensive method to measure 13C of respired CO2 in the lab and the field.  相似文献   

2.
Summary Mesembryanthemum crystallinum L., an inducible crassulacean acid metabolism (CAM) plant, was grown for approximately 5 weeks following germination in well-watered, non-saline soil in a controlled-environment chamber. During this time, plants were characterized by C3 photosynthetic carbon metabolism. After the initial 5 weeks, CAM was induced by a combination of high soil salinity and reduced soil water content. One group of plants was allowed to engage in CAM by being continuously exposed to normal CO2-containing air (about 350–400 ppm). A second group of plants was deprived of ambient CO2 each night (12 h dark period) until completion of their life cycle, thereby minimizing potential carbon gain via dark CO2 fixation. The capacity to express CAM under conditions of drought and salinity stress markedly improved reproductive success: plants kept in normal CO2-containing air produced about 10 times more seeds than plants kept in CO2-free air during dark periods. Seeds from plants deprived of ambient CO2 overnight had more negative 13C values than seeds from plants kept in normal air.  相似文献   

3.
Temporal variability in the 13C of foliage (13CF), soil (13CS) and ecosystem (13CR) respired CO2 was contrasted between a 17.2-m tall evenly aged loblolly pine forest and a 35-m tall unevenly aged mature second growth mixed broadleaf deciduous forest in North Carolina, USA, over a 2-year period. The two forests are located at the Duke Forest within a kilometer of each other and are subject to identical climate and have similar soil types. The 13CF, collected just prior to dawn, was primarily controlled by the time-lagged vapor pressure deficit (VPD) in both stands; it was used for calculating the ratio of intercellular to ambient CO2 (Ci/Ca). A remarkable similarity was observed in the relationship between Ci/Ca and time-lagged VPD in these two forests despite large differences in hydraulic characteristics. This similarity emerged as a result of physiological adjustments that compensated for differences in plant hydraulic characteristics, as predicted by a recently proposed equilibrium hypothesis, and has implications to ecophysiological models. We found that in the broadleaf forest, the 13C of forest floor CO2 efflux dominated the 13CR, while in the younger pine forest, the 13C of foliage respired CO2 dominated 13CR. This dependence resulted in a more variable 13CR in the pine forest when compared to the broadleaf forest due to the larger photosynthetic contribution. Given the sensitivity of the atmospheric inversion models to 13CR, the results demonstrate that these models could be improved by accounting for stand characteristics, in addition to previously recognized effects of moisture availability, when estimating 13CR.  相似文献   

4.
Carbon-isotope ratios were examined as 13C values in several C3, C4, and C3–C4 Flaveria species, and compared to predicted 13C, values generated from theoretical models. The measured 13C values were within 4 of those predicted from the models. The models were used to identify factors that contribute to C3-like 13C values in C3–C4 species that exhibit considerable C4-cycle activity. Two of the factors contributing to C3-like 13C values are high CO2 leakiness from the C4 pathway and pi/pa values that were higher than C4 congeners. A marked break occurred in the relationship between the percentage of atmospheric CO2 assimilated through the C4 cycle and the 13C value. Below 50% C4-cycle assimialtion there was no significant relationship between the variables, but above 50% the 13C values became less negative. These results demonstrate that the level of C4-cycle expression can increase from, 0 to 50% with little integration of carbon transfer from the C4 to the C3 cycle. As expression increaces above 50%, however, increased integration of C3- and C4-cycle co-function occurs.Abbreviations and symbols RuBP carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - PEP carboxylase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - pa atmospheric CO2 partial pressure - pi intercellular CO2 partial pressure - isotope ratio - quantum yield for CO2 uptake  相似文献   

5.
Culture experiments were carried out with Acropora sp. (a branching scleractinian coral) in seawater at two pCO2 conditions (438 and 725 µatm) and two temperatures (25 and 28 °C) in order to establish the pH and temperature dependence of the boron isotopic composition of the skeleton. A clear pCO2 effect, but no temperature effect, on the coral boron isotope composition is seen. For corals cultured at normal pCO2 (438 µatm), the 11B of the skeleton was 24.0±0.2 at 25 °C, and 23.9±0.3 at 28 °C. The values of 11B measured for corals cultured at higher pCO2 (725 µatm) were lower: 22.5±0.1, and 22.8±0.1 at 25 and 28 °C, respectively. The 11B of corals cultivated at both high and normal pCO2 conditions are consistent with a dominant pH control, and are very close to that calculated from theoretical considerations. Thus, the corals do not seem to significantly alter ambient seawater for calcification with respect to pH. Co-variation between boron and carbon isotope values is explored.Communicated by: Guest Editor A. Grottoli  相似文献   

6.
Summary Hemiepiphytic species in the genera Clusia and Ficus were investigated to study their mode of photosynthetic metabolism when growing under natural conditions. Despite growing sympatrically in many areas and having the same growth habit, some Clusia species show Crassulacean acid metabolism (CAM) whereas all species of Ficus investigated are C3. This conclusion is based on diurnal CO2 fixation patterns, diurnal stomatal conductances, diurnal titratable acidity fluctuations, and 13C isotope ratios. Clusia minor, growing in the savannas adjacent to Barinas, Venezuela, shows all aspects of Crassulacean acid metabolism (CAM) on the basis of nocturnal gas exchange, stomatal conductance, total titratable acidity, and carbon isotope composition when measured during the dry season (February 1986). During the wet season (June 1986), the plants shifted to C3-type gas exchange with all CO2 uptake occurring during the daylight hours. The carbon isotope composition of new growth was-28 to-29 typical of C3 plants.  相似文献   

7.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

8.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

9.
In this paper we analysed autotrophic sources of the carbon ( 13C) and the trophic position ( 15N) of Leporinus friderici in the influence area of Corumbá Reservoir, Brazil. We collected samples of muscles of fish from different sizes riparian vegetation, C4 grasses, zooplankton, periphyton and particulate organic carbon (POC). There were significant differences for the carbon isotope proportion found in muscles of L.friderici in the different size groups analysed. The highest values of 13C recorded for middle sized individuals is attributed to the large contribution of C4 plants in their diet. Small individuals sampled upstream also receive similar contribution from C4 plants. In contrast the same size group sampled downstream from the reservoir, has a much smaller of C4 plants. The 13C negative character of small individuals from downstream is due to the larger contribution of C3 plants (except periphyton). At larger sizes we found intermediate 13C values. The 15N proportions we found for each size group were not significantly different, however we found decreasing mean values with increasing size. The trophic level calculated from the dietary data was higher than that found with the 13C concentration in the muscle, except for small individuals, when the values were equal.  相似文献   

10.
Measurement of nitrogen isotopic composition (15N) of plants and soil nitrogen might allow the characteristics of N transformation in an ecosystem to be detected. We tested the measurement of 15N for its ability to provide a picture of N dynamics at the ecosystem level by doing a simple comparison of 15N between soil N pools and plants, and by using an existing model. 15N of plants and soil N was measured together with foliar nitrate reductase activity (NRA) and the foliar NO3 pool at two sites with different nitrification rates in a temperature forest in Japan. 15N of plants was similar to that of soil NO3 in the high-nitrification site. Because of high foliar NRA and the large foliar NO3 pool at this site, we concluded that plant 15N indicated a great reliance of plants on soil NO3 there. However, many 15N of soil N overlapped each other at the other site, and 15N could not provide definitive evidence of the N source. The existing model was verified by measured 15N of soil inorganic N and it explained the variations of plant 15N between the two sites in the context of relative importance of nitrification, but more information about isotopic fractionations during plant N uptake is required for quantitative discussions about the plant N source. The model applied here can provide a basis to compare 15N signatures from different ecosystems and to understand N dynamics.  相似文献   

11.
Variation in stable nitrogen isotope ratios (15N) was assessed for plants comprising two wetland communities, a bog-fen system and a flood plain, in central Japan. 15N of 12 species from the bog-fen system and six species from the flood plain were remarkably variable, ranging from –5.9 to +1.1 and from +3.1 to +8.7, respectively. Phragmites australis exhibited the highest 15N value at both sites. Rooting depth also differed greatly with plant species, ranging from 5cm to over 200cm in the bog-fen system. There was a tendency for plants having deeper root systems to exhibit higher 15N values; plant 15N was positively associated with rooting depth. Moreover, an increasing gradient of peat 15N was found along with depth. This evidence, together with the fact that inorganic nitrogen was depleted under a deep-rooted Phragmites australis stand, strongly suggests that deep-rooted plants actually absorb nitrogen from the deep peat layer. Thus, we successfully demonstrated the diverse traits of nitrogen nutrition among mire plants using stable isotope analysis. The ecological significance of deep rooting in mire plants is that it enables those plants to monopolize nutrients in deep substratum layers. This advantage should compensate for any consequential structural and/or physiological costs. Good evidence of the benefits of deep rooting is provided by the fact that Phragmites australis dominates as a tall mire grass.  相似文献   

12.
Summary The carbon isotope compositions of samples of Kalanchoë species collected at the natural stands in Madagascar were determined. The results suggest that all species of the genus Kalanchoë are capable of crassulacean acid metabolism. The observed 13C values cover the whole range from –10 to –30. This high diversity of the 13C values was found among the species of the genus as well as, in certain cases, within a single species. This suggest that the CAM patterns in Kalanchoë are generally very flexible. The 13C values show a clear correlation with the climate of the habitats from where the samples derived. Values indicative of CO2 fixation taking place exclusively during the night were found in the dry regions of Madagascar, whereas 13C values indicative of mixed CO2 fixation during night and day or of CO2 fixation entirely during the day are distributed in the humid zones.  相似文献   

13.
Kübler  Janet E.  Raven  John A. 《Hydrobiologia》1996,326(1):401-406
Palmaria palmata, which is able to use HCO inf3 sup– as a carbon source for photosynthesis, and Lomentaria articulata, which is dependent on diffusive uptake of dissolved CO2, were grown under constant light and light with sunflecks designed to model wave-induced fluctuations of near-shore underwater light. Both species exhibited significantly increased stable carbon isotope discrimination (more negative values of 13C relative to PDB) when grown with sunflecks. More negative 13C values were associated with decreased growth rate of P. palmata but not of L. articulata. The contrasting effects of sunflecks on the carbon-use characteristics of the two species are discussed in terms of the energetic cost of HCO inf3 sup– use and the susceptibility of CO2 diffusion-dependent species to photoinhibition.  相似文献   

14.
Summary Within the area of its natural distribution in South West Africa, Welwitschia mirabilis has a less negative 13C value than C3 plants and a more negative 13C value than C4 species. This indicates that Welwitschia m. assimilates CO2 partially via CAM when growing in its natural habitat. The difference between the 13C values of Welwitschia m. and of the C3 species is significant in the savanna, whereas it is only small and statistically not significant in the grassland zone. The proportion of CO2 fixed via CAM is largest in the coastal desert zone. There was no correlation between the 13C values and the Cl- or ash content of the tissue. Thus, CAM in Welwitschia m. seems not to be induced by salt stress. There is no change in the 13C values along the persistent Welwitschia m. leaf. The present data indicate that on a broad geographical scale in the area of distribution temperature regime, and water stress as a modifying factor, determine CAM in Welwitschia m. The ecological implications are discussed by comparing the behaviour of Welwitschia m. with other CAM, C3 and C4 species of the accompanying flora.  相似文献   

15.
Liu  X.Q.  Wang  R.Z.  Li  Y.Z. 《Photosynthetica》2004,42(3):339-344
Photosynthetic pathway types, based on 13C measurements, were determined for 125 species in 95 genera and 32 families growing in rangelands from Inner Mongolia. Of the total species, 4 species from 3 genera and 2 families had C4 photosynthesis (2 species in Gramineae and 2 in Chenopodiaceae) and 118 species from 90 genera and 31 families had C3 photosynthesis. The number of C4 species differed significantly among four rangeland sites, 4 species in desert, 3 species in steppe, but no C4 species were identified in meadow and dune. Six species [e.g. Agriophyllum arenarium Bieb., Bassia dasyphylla O. Kuntze, Saussurea japonica (Thunb.) DC.] earlier identified as C4 species using the enzyme ratio method were found as C3 species using the carbon isotope ratios (13C). Hence the enzyme ratio method for C3 and C4 identification may not always be reliable. The 13C values of 3 species of Crassulaceae, which had been considered as CAM species, differed remarkably [–25.79 for Sedum aizoon L., –24.42 for Osostachys fimbriatus (Turcz.) Berger, and –16.97 for O. malacophyllus (Pall.) Fisch], suggesting that the use of 13C method as a diagnosis for CAM photosynthetic pathway type may not always be reliable and supplementary measurements are needed.  相似文献   

16.
T. H. E. Heaton 《Oecologia》1987,74(2):236-246
Summary Data are presented for the 15N/14N ratios of 140 indigenous terrestrial plants from a wide variety of natural habitats in South Africa and Namibia. Over much of the area, from high-rainfall mountains to arid deserts, the 15N values of plants lie typically in the range -1 to +6; with no evident differences between C3 plants and C4 grasses. There is a slight correlation between 15N and aridity, but this is less marked than the correlation between the 15N values of animal bones and aridity. At coastal or saline sites, however, the mean 15N values for plants are higher than those at nearby inland or non-saline sites-e.g.: arid Namib coast (10 higher than inland Namib); wet Natal beach (5 higher than inland Natal); saline soils 500 km from coast (4 higher than non-saline soils). High values were also found at one site where there were no marked coastal or saline influences. These environmental effects on the isotopic composition of plants will extend upwards to the animals and humans they support. They therefore have important consequences for the use of nitrogen isotope data in the study of the dietary habits and trophic structures of modern and prehistoric communities.  相似文献   

17.
The CO2 concentration of the atmosphere has increased by almost 30% in the past two centuries, with most of the increase (>5 Pa) during the past 60 years. Controlled environment studies of crop plants dependent on the C3 photosynthetic pathway indicate that an increase of this magnitude would enhance net photosynthesis, reduce stomatal conductance, and increase the difference in CO2 concentration across the stomata, i.e., CO2 concentration outside the leaf to that within (c a-c i). Here we report evidence, based on stable isotope composition of tree rings from three species of field-grown, native conifer trees, that the trees have indeed responded. However, rather than increasing c a-c i, intercellular CO2 concentrations have shifted upward to match the rise in atmospheric concentrations, holding c a-c i constant. No differences were detected among Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), or western white pine (Pinus monticola). The values of c a-c i were inferred from stable carbon isotope ratio (13C) of tree ring holocellulose adjusted for the 0.6–2.6 difference between holocellulose and whole sapwood. The cellulose extraction removed contaminants deposited in the tree ring after it formed and the adjustment corrected for the enrichment of cellulose relative to whole tissue. The whole sapwood values were then adjusted for bublished estimates of past atmospheric 13CO2 and CO2 concentrations. To avoid confounding tree age with CO2, cellulose deposited by saplings in the 1980s was compared to cellulose deposited in the inner rings of nature trees when the mature trees were saplings, between 1910–1929 and 1941–1970; thus saplings were compared to saplings. In a separate analysis, the juvenile effect, which describes the tendency for 13C to increase in the first decades of a tree's life, was quantified independent of source CO2 effects. This study provides evidence that conifers have undergone adjustments in the intercellular CO2 concentration that have maintained c a-c i constant. Based on these results and others, we suggest that c a-c i, which has also been referred to as the intrinsic water-use efficiency, should be considered a homeostatic gas-exchange set point for these conifer species.  相似文献   

18.
The genus Clusia is notable in that it contains arborescent crassulacean acid metabolism (CAM) plants. As part of a study of CAM in Clusia, titratable acidities were measured in 25 species and 13C values were measured for 38 species from Panamá, including seven undescribed species, and 11 species from Colombia, Costa Rica and Honduras. CAM was detected in 12 species. Clusia flava, C. rosea and C. uvitana exhibited 13C values or diurnal fluctuations in acidity indicative of strong CAM. In C. croatii, C. cylindrica, C. fructiangusta, C. lineata, C. odorata, C. pratensis, C. quadrangula, C. valerioi and C. sp. D diurnal fluctuations in acidity were consistent with weak CAM but the 13C values were C3-like. All of the species that exhibited strong or weak CAM were in the C. flava or C. minor species groups. CAM was not detected in any member of the C. multiflora species group. Strong CAM species were not collected at altitudes above 680 m a.s.l. On the basis of 13C values, the expression of CAM was similar in terrestrial, hemi-epiphytic and epiphytic species and did not differ between individuals of the same species that exhibited different life-forms. This study indicates that phylogenetic affiliation may be a predictor of an ability to exhibit CAM in Clusia species from the Panamanian region, and that weak CAM is probably a common photosynthetic option in many Clusia species. 13C value is not a particularly good indicator of a potential of Clusia species growing in the field to exhibit CAM because it appears that the contribution in most species of CAM to carbon gain is generally rather small when integrated over the life-time of leaves.  相似文献   

19.
Natural abundance of 15N in tropical plants with emphasis on tree legumes   总被引:6,自引:0,他引:6  
Natural abundance of 15N ( 15N) of leaves harvested from tropical plants in Brazil and Thailand was analyzed. The 15N values of non-N2-fixing trees in Brazil were +4.5±1.9, which is lower than those of soil nitrogen (+8.0±2.2). In contrast, mimosa and kudzu had very low 15N values (–1.4+0.5). The 15N values of Panicum maximum and leguminous trees, except Leucaena leucocephala, were similar to those of non-N2-fixing trees, suggesting that the contribution of fixed N in these plants is negligible. The 15N values of non-N2-fixing trees in Thailand were +4.9±2.0. Leucaena leucocephala, Sesbania grandiflora, Casuarina spp. and Cycas spp. had low 15N values, close to the value of atmospheric N2 (0), pointing to a major contribution of N2 fixation in these plants. Cassia spp. and Tamarindus indica had high 15N values, which confirms that these species are non-nodulating legumes. The 15N values of Acacia spp. and Gliricidia sepium and other potentially nodulating tree legumes were, on average, slightly lower than those of non-N2-fixing trees, indicating a small contribution of N2 fixation in these legumes.  相似文献   

20.
The stable isotopic composition of soil water is controlled by precipitation inputs, antecedent conditions, and evaporative losses. Because transpiration does not fractionate soil water isotopes, the relative proportions of evaporation and transpiration can be estimated using a simple isotopic mass balance approach. At our site in the shortgrass steppe in semi-arid northeastern Colorado, 18O values of soil water were almost always more enriched than those of precipitation inputs, owing to evaporative losses. The proportion of water lost by evaporation (E/ET) during the growing season ranged from nil to about 40% (to >90% in the dormant season), and was related to the timing of precipitation inputs. The sum of transpiration plus evaporation losses estimated by isotopic mass balance were similar to actual evapotranspiration measured from a nearby Bowen ratio system. We also investigated the evapotranspiration response of this mixed C3/C4 grassland to doubled atmospheric [CO2] using Open-Top Chambers (OTC). Elevated atmospheric [CO2] led to increased soil-water conservation via reduced stomatal conductance, despite greater biomass growth. We used a non-invasive method to measure the 18O of soil CO2 as a proxy for soil water, after establishing a strong relationship between 18O of soil CO2 from non-chambered control (NC) plots and 18O of soil–water from an adjacent area of native grassland. Soil–CO2 18O values showed significant treatment effects, particularly during a dry summer: values in ambient chambers (AC) were more enriched than in NC and elevated chamber (EC) plots. During the dry growing season of 2000, transpiration from the EC treatment was higher than from AC and lower than from NC treatments, but during 2001, transpiration was similar on all three treatments. Slightly higher evaporation rates from AC than either EC or NC treatments in 2000 may have resulted from increased convection across the soil surface from the OTC blowers, combined with lower biomass and litter cover on the AC treatment. Transpiration-use efficiency, or the amount of above-ground biomass produced per mm water transpired, was always greatest on EC and lowest on NC treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号