首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of lipases from Candida rugosa and wheat germ have been investigated in three reaction media using three acetate hydrolyses as model reactions (ethyl acetate, allyl acetate, and prenyl acetate). The effect of substrate properties and water content were studied for each system (organic solvent, biphasic system, and reverse micelles). Not unexpectedly, the effect of water content is distinct for each system, and the optimal water content for enzyme activity is not always the same as that for productivity. A theoretical model has been used to simulate and predict enzyme performance in reverse micelles, and a proposed partitioning model for biphasic systems agrees well with experimental results. While the highest activities observed were in the micellar system, productivity in microemulsions is limited by low enzyme concentrations. Biphasic systems, however, support relatively good activity and productivity. The addition of water to dry organic solvents, combined with the dispersion of lyophilized enzyme powders in the solvent, resulted in significant enzyme aggregation, which not surprisingly limits the applicability of the "anhydrous" enzyme suspension approach. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
Harris RM  Picton R  Singh S  Waring RH 《Life sciences》2000,67(17):2051-2057
Sulfate conjugation by sulfotransferase enzymes is an important pathway for the detoxication of xenobiotics and endogenous compounds. The large surface area of the gastrointestinal tract exposes the body to a range of potential toxins, and hence local metabolism is likely to be important. The ability of different regions of the gut to sulfate micromolar concentrations of simple phenols and catecholamines has been determined throughout the gut using 4-nitrophenol and dopamine as standard substrates. The pattern of sulfation of both compounds was similar, with activity highest in the small bowel >right colon >left colon >rectum >stomach >esophagus. High concentrations of sulfotransferases in the reservoir areas of the right and left colon indicate possible importance in detoxication by sulfation and also perhaps in activating mutagens in the same areas. Nutritional factors, such as a high-fat diet may, however, alter sulfotransferase activity.  相似文献   

3.
Kinetics of sulfation in the rat in vivo and in the perfused rat liver   总被引:1,自引:0,他引:1  
Sulfation of phenols and similar low-molecular-weight substrates in the rat in vivo is a rather complex process. Besides enzyme kinetic parameters, cosubstrate availability (indirectly measured by serum sulfate concentration) and competition with glucuronidation also play a role. For some substrates extensive extrahepatic sulfation occurs, accounting for more than 50% of the total-body sulfation capacity. However, the hepatic contribution may be under-estimated when drugs are administered into the hepatic portal vein, because saturation of hepatic metabolism may occur under those conditions. Inside the liver, sulfation is located primarily in zone 1, the periportal area. This can be shown in the single-pass perfused rat liver by perfusion in either the normal or retrograde flow direction. In the rat sulfate conjugates are eliminated preferentially in urine, whereas glucuronides are excreted to a high extent in bile. Therefore, it is important to collect both bile and urine in the characterization of pharmacokinetics of conjugation in vivo. Selective inhibition of sulfation by pentachlorophenol and 2,6-dichloro-4-nitrophenol facilitates studies of the role of sulfation in elimination of its substrates, and the competition between sulfation and glucuronidation for the same substrate.  相似文献   

4.
We have developed different activity/stability tests to evaluate the possibilities of fully dispersed chymotrypsin derivatives as industrial catalysts in biphasic systems. We have tested different immiscible organic solvents (log P ranged from 0.65 to 2.8) and used different enzyme derivatives (soluble chymotrypsin and one-point and multipoint covalent attached derivatives). Special emphasis has been given to the role of the "exact composition of the aqueous phase."High phosphate concentrations largely protect every hymotrypsin derivative from the distorting effects of dissolved solvent molecules. The effects on the activity and stability of soluble chymotrypsin due to saturating solvent concentrations in an aqueous solution, and the much more severe effects of contact with the phase interface in a stirred biphasic system, all show the opposite trend for the influence of solvent polarity to that generally observed for biocatalysts. For example, deleterious effects decline in the order chloroform, dichloromethane, ethyl acetate. On the contrary, with or without stirring, our stabilized chymotrypsin-agarose derivatives are much more stable against these water-immiscible solvents, and their relative effects follow the normal trend. From these integrated activity and stability tests we can conclude that fully dispersed immobilized-stabilized derivatives seem to be an interesting alternative to develop industrial biphasic processes catalyzed by chymotrypsin.  相似文献   

5.
Arylsulfotransferase catalyzes the transfer of a sulfate group from 3-phosphoadenosine-5-phosphosulfate (PAPS) to a phenolic acceptor substrate. We discovered a novel type of sulfotransferase from an anaerobic bacterium of human intestine, Eubacterium A-44. In the bacterial enzyme PAPS did not serve as a donor and all alcohols did not as acceptors. The new arylsulfotransferase was purified 185-fold from a crude extract of sonicated bacteria to homogeneity. The enzyme (MW 315 kd) was composed of four identical subunits (MW 80 kd) whose N-terminal amino acid was arginine, and its optimal pH and pI were 8–9 and 3.9, respectively. The enzyme catalyzed stoichiometric transfer of a sulfate group from a phenol sulfate ester to other phenols, with strict specificity. With tyramine as an acceptor, p-acetylphenyl sulfate was the best donor, followed by 4-methylumbelliferyl sulfate and p-nitrophenyl sulfate. With p-nitrophenyl sulfate as a donor, naphthol was the best acceptor, followed by estradiol, phenol, tyrosine methylester, tyramine, and epinephrine in decreasing order. Only the 4-position of catecholamines was specifically sulfated. Naturally occurring phenolic compounds, such as flavone, chalcone, and xanthone, were sulfated as well. Tyrosine-containing peptides were enzymatically sulfated: enkephalin, LH-RH, vasopressin, angiotensins, proctorin, CCK-8, and phyllocaerulein were sulfated with high yields. The novel sulfotransferase is expected to be applicable to enzymatic O-sulfation of tyrosine-containing hormones. The 35S-labeled sulfate group from (35S)p-nitrophenyl sulfate was incorporated into a tyrosyl residue at the active site of the enzyme (2 mole 35S/mole of enzyme). The enzyme was inactivated by diethylpyrocarbamate and TLCK, chemical modifying agents for a histidyl residue. The reaction mechanism of arylsulfotransferase was proposed as follows: a donor substrate combines a histidyl residue with concomitant release of a phenolic compound. The sulfate group of the histidyl residue transfers to a tyrosyl residue, and then to an acceptor with the binding of another donor substrate to the histidyl residue.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

6.
Arylsulfotransferase was stabilized for storage more markedly by covalent immobilization onto DEAE-cellulose or DEAE-Sephadex. The optimal pH, Km for sulfate donor and thermostability of covalently immobilized arylsulfotransferase were similar to those of the free enzyme. Tyrosine-containing peptides such as cholecystokinin-8-nonsulfate, tyrosine methylester and (Leu)enkephalin as acceptor substrates were effectively sulfated by the immobilized enzyme.  相似文献   

7.
A wide range of enzymes and whole microbial cells will act as catalysts in reaction mixtures that contain 2 or more phases, one of which is an organic liquid (either a reactant or including water-immiscible organic solvents). These "biphasic" systems have a variety of structures, knowledge of which aids predictions about biocatalyst activity and stability. There is often a dilute aqueous solution phase (containing the biocatalyst), which may be emulsified with the organic phase, or "trapped" within catalyst particles; sometimes however there may only be traces of water adsorbed to the enzyme or cells. These reaction systems offer several advantages for industrial applications, notably the higher solubilities of many reactants of interest, and the ability of readily available hydrolytic enzymes to catalyse syntheses. The most non-polar organic liquids are least likely to inactivate biocatalysts, though many do remain active with relatively polar solvents. Modification of the biocatalyst may stabilise against inactivation, especially where this is due to direct contact with the phase interface. The mass transfer processes required in these systems remain poorly understood, particularly because the interfacial area is often unknown. Attractive continuous reactors may be operated using a packed bed of catalyst with a trapped aqueous phase.  相似文献   

8.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

9.
Galactocerebroside sulfotransferase (EC 2.8.2.11) was purified to apparent homogeneity from rat kidneys. The purified protein is stable at -20 degrees C, and has an estimated molecular weight of 64,000 and a pI of 5.1. In contrast to other known sulfotransferases, the enzyme appears not to require divalent metal ions for activity. The Km for the donor, 3'-phosphoadenosine 5'-phosphosulfate, is 5.2 microM. Structural studies on this "active" sulfate donor show the requirement of a phosphate group at the 3' position of the ribose moiety. Modification of the amino group at either the 6 or 8 position on the purine ring renders the corresponding compounds poor substrates. Both galactosylceramide and lactosylceramide are effective acceptors for this enzyme, while galactosylsphingosine and galactosylglycerolipids are sulfated only poorly, suggesting that the in vivo sulfation of these glycolipids is carried out by different sulfotransferases. The active site of the enzyme contains arginine residues which appear to be important in binding the sulfate donor. The enzyme protein is hydrophobic and binds 0.17 mg [3H]Triton X-100/mg protein. The purified enzyme contains bound lipids, consisting primarily of cholesterol and phosphatidylcholine. The lipid environment affects the activity of the enzyme which, in turn, regulates the sulfation of glycolipids.  相似文献   

10.
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).  相似文献   

11.
Tyapochkin E  Cook PF  Chen G 《Biochemistry》2008,47(45):11894-11899
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biosignaling molecular biological activities and detoxifies hydroxyl-containing xenobiotics. The universal sulfuryl group donor for SULTcatalyzed sulfation is adenosine 3'-phosphate 5'-phosphosulfate (PAPS). The reaction products are a sulfated product and adenosine 3',5'-diphosphate (PAP). Although the kinetics has been reported since the 1980s,SULT-catalyzed reaction mechanisms remain unclear. Human SULT1A1 catalyzes the sulfation of xenobiotic phenols and has very broad substrate specificity. It has been recognized as one of the most important phase II drug-metabolizing enzymes. Understanding the kinetic mechanism of this isoform is important in understanding drug metabolism and xenobiotic detoxification. In this report, we investigated the SULT1A1-catalyzed phenol sulfation mechanism. The SULT1A1-catalyzed reaction was brought to equilibrium by varying substrate (1-naphthol) and PAPS initial concentrations. Equilibrium constants were determined. Two isotopic exchanges at equilibrium ([14C]1-naphthol <=>[14C]1-naphthyl sulfate and[35S]PAPS<=>[35S]1-naphthyl sulfate) were conducted. First-order kinetics, observed for all the is otopic exchange reactions studied over the entire time scale that was monitored, indicates that the system was truly at equilibrium prior to addition of an isotopic pulse. Complete suppression of the 35S isotopic exchange rate was observed with an increase in the levels of 1-naphthol and 1-naphthyl sulfate in a constant ratio,while no suppression of the 14C exchange rate was observed with an increase in the levels of PAPS and PAP in a constant ratio. Data are consistent with a steady state ordered kinetic mechanism with PAPS and PAP binding to the free enzyme.  相似文献   

12.
Enzymes are attractive catalysts for the production of optically active compounds in organic solvents. However, their often low catalytic activity in such applications hampers their practical use. To overcome this, we investigated the effectiveness of the covalent modification of alpha-chymotrypsin with methoxy poly(ethylene glycol) (PEG) with a Mw of 5,000 to enhance its activity. The model transesterification reaction between sec-phenethyl alcohol and vinyl butyrate in various neat dry organic solvents and at a controlled water activity of 0.008 in two solvents was employed to measure the effect of PEGylation on activity and enantioselectivity. Synthesis conditions were varied to obtain various conjugates with average molar ratios of PEG-to-chymotrypsin ranging from ca. 1 to 7. While the enantioselectivity increased only modestly from ca. 4.4 to 6.1 when averaging results in all solvents, PEG was very efficient in increasing the activity of alpha-chymotrypsin up to more than 400-fold compared to that of the powder lyophilized from buffer alone. The activity increase was more pronounced in apolar than in polar organic solvents and also depended on the amount of PEG bound to the enzyme. For example, the activity of the modified enzyme towards the most reactive "S" enantiomer in octane increased 440-fold but increasing the molar ratio of PEG-to-enzyme from 1.1 to 7.1 resulted in a more than twofold decrease in enzyme activity. Controlling the water activity did not prevent the drop in activity. To investigate the possible origin of the activity changes, Fourier transform infrared (FTIR) spectroscopy experiments were conducted. It was found that PEGylation reduced lyophilization-induced structural perturbations, but exposure to the organic solvents caused structural perturbations. These perturbations were more pronounced in polar than in apolar solvents. The pronounced activity drop in polar solvents at increasing PEG-modification levels correlated with an increasing level of solvent-induced structural perturbations. This correlation was less pronounced in apolar solvents where both, activity drop and structural perturbations, were less pronounced at increasing PEGylation levels. In summary, PEG-modified alpha-chymotrypsin might be an interesting system to catalyze reactions, particularly in apolar organic solvents.  相似文献   

13.
Lysoglycosphingolipids were produced from glycosphingolipids by using sphingolipid ceramide N-deacylase, which cleaves the N-acyl linkage between fatty acids and sphingosine bases in various glycosphingolipids. The enzyme reaction was done in a biphasic media prepared with water;-immiscible organic solvent and aqueous buffer solution containing the enzyme. We investigated the effects of organic solvents and detergents on lysoglycosphingolipid production in the biphasic system. Among the organic solvents tested, n-butylbenzene, cumene, cyclodecane, cyclohexane, n-decane, diisopropylether, n-heptadecane, and methylcyclohexane promoted hydrolysis of GM1, whereas benzene, chloroform, ethyl acetate, and toluene inhibited GM1 hydrolysis. Hydrolysis of asialo GM1, GD1a, GalCer, and sulfatide was also enhanced by the addition of n-decane. The hydrolytic activity of the enzyme was enhanced by the addition of 0.8% sodium taurodeoxycholate or sodium cholate to the aqueous phase. The most effective hydrolysis of various glycosphingolipids by the enzyme was thus obtained in the aqueous-n-decane biphasic system containing 0.8% sodium taurodeoxycholate. Under this condition, the fatty acids released from GM1 by the action of the enzyme were trapped and diffused into the organic phase, while lysoGM1 remained in the aqueous phase.Thus the almost complete hydrolysis of GM1 was achieved using the biphasic system, while at most 70% of hydrolysis was obtained using normal aqueous media possibly due to the inhibition of hydrolysis reaction by accumulation of fatty acids in the reaction mixture.  相似文献   

14.
Dihydroorotase +4,5-L-dihydro-orotate amidohydrolase [EC 3.5.2.3]), which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to L-dihydroorotate, has been purified from orotate-grown Clostridium oroticum. The enzyme is homogeneous when subjected to polyacrylamide gel electrophoresis and is stable at pH 7.6 in 0.3 M NaCl containing 10 muM ZnSO4. The enzyme has a molecular weight of approximately 110,000. Sodium dodecyl sulfate gel electrophoresis, using three different buffer systems, indicated the enzyme is composed of two subunits, each having a molecular weight of 55,000. Dihydroorotase is shown by atomic absorption spectroscopy to be a zinc-containing metalloenzyme with 4 g-atoms of zinc per 110,000 g of protein. The pH optima for the conversion of N-carbamyl-L-aspartate to L-dihydroorotate and for L-dihydroorotate to N-carbamyl-L-aspartate are pH 6.0 and 8.2, respectively. The Km values for N-carbamyl-L-aspartate and for L-dihydroorotate are 0.13 and 0.07 mM, respectively. Inhibitor studies indicate that zinc may be involved in the catalytic activity of the enzyme.  相似文献   

15.
Heparan sulfate polymerization and modification take place in the Golgi compartment. The modification reactions are initiated by glucosaminyl N-deacetylase/N-sulfotransferase (NDST), a bifunctional enzyme that removes N-acetyl groups from selected N-acetyl-d-glucosamine units followed by N-sulfation of the generated free amino groups. Four isoforms of NDST have been identified. NDST-1 and -2 have a wide and largely overlapping tissue distribution, but it is not known if they can act on the same heparan sulfate chain. We have introduced point mutations into NDST-1 cDNA, which selectively destroy the N-deacetylase or N-sulfotransferase activity of the enzyme [Wei, Z., and Swiedler, S. J. (1999) J. Biol. Chem. 274, 1966-70 and Sueyoshi, T., et al. (1998) FEBS Lett. 433, 211-4]. Stable 293 cell lines expressing the NDST-1 mutants were then generated. Structural analyses of heparan sulfate synthesized by these cells and by cells overexpressing wild-type NDST-1 demonstrate that the N-deacetylation step is not only prerequisite but also rate-limiting, determining the degree of N-sulfation. Transfection of mutant NDST-1 lacking N-deacetylase activity had no effect on heparan sulfate sulfation, while cells expressing wild-type enzyme or NDST-1 lacking N-sulfotransferase activity both resulted in the production of oversulfated heparan sulfate. Since no increase in the amount of N-unsubstituted glucosamine residues was seen after transfection of the mutant lacking N-sulfotransferase activity, the results also suggest that two different enzyme molecules can act on the same glucosamine unit. In addition, we show that oversulfation of heparan sulfate produced by cells tranfected with wild-type NDST-1 or the mutant lacking N-sulfotranferase activity results in decreased sulfation of chondroitin sulfate.  相似文献   

16.
Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the Km values at pH 7.5 and 30 degrees C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the Km value for acetoacetyl-CoA ranged from about 7 to 56 microM, depending on the acid substrate. The Km values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.  相似文献   

17.
Coenzyme A (CoA) transferase from Clostridium acetobutylicum ATCC 824 was purified 81-fold to homogeneity. This enzyme was stable in the presence of 0.5 M ammonium sulfate and 20% (vol/vol) glycerol, whereas activity was rapidly lost in the absence of these stabilizers. The kinetic binding mechanism was Ping Pong Bi Bi, and the Km values at pH 7.5 and 30 degrees C for acetate, propionate, and butyrate were, respectively, 1,200, 1,000, and 660 mM, while the Km value for acetoacetyl-CoA ranged from about 7 to 56 microM, depending on the acid substrate. The Km values for butyrate and acetate were high relative to the intracellular concentrations of these species; consequently, in vivo enzyme activity is expected to be sensitive to changes in those concentrations. In addition to the carboxylic acids listed above, this CoA transferase was able to convert valerate, isobutyrate, and crotonate; however, the conversion of formate, n-caproate, and isovalerate was not detected. The acetate and butyrate conversion reactions in vitro were inhibited by physiological levels of acetone and butanol, and this may be another factor in the in vivo regulation of enzyme activity. The optimum pH of acetate conversion was broad, with at least 80% of maximal activity from pH 5.9 to greater than 7.8. The purified enzyme was a heterotetramer with subunit molecular weights of about 23,000 and 25,000.  相似文献   

18.
Soluble phosphotriesterase from E. coli DH5 together with E. coli DH5 cells with the phosphotriesterase activity were co-immobilized into poly(vinyl alcohol) (PVA) cryogel and studied in water/organic systems with polar and non-polar organic solvents. The phosphotriesterase activity was competitively inhibited by polar organic solvents. The inhibition constant correlated with the dielectric constant () of the solvent. The rate of the enzyme-catalyzed reaction in biphasic non-polar solvent/water systems was independent of water/organic ratio and the hydrophobicity of the solvent. Formation of the non-covalent complexes with polyelectrolytes was suggested to enhance the resistance of the phosphotriesterase towards inactivation by organic solvents in their homogeneous mixtures with water.  相似文献   

19.
The role of glucuronide and sulfate conjugation in presystemic inactivation of benzo[a]pyrene (BP) metabolites was investigated with rat livers perfused with BP (12 mumol). Comparisons were made between metabolite profiles and mutagenicity of medium from perfusions with and without salicylamide, a selective inhibitor of glucuronide and sulfate conjugation. After 4 h perfusion in the presence of salicylamide, certain BP metabolites (diols, quinones, phenols, and metabolites more polar than BP-9,10-diol) were significantly increased at the expense of quinones and phenols in the glucuronide fraction. Mutagenicity of medium (detected by the Ames test, using tester strains TA98 and TA100) was low in perfusion without salicylamide. Mutagenicity detected with tester strain TA98 was significantly increased in perfusions with salicylamide. Involvement of glucuronidation in BP inactivation was also observed at the subcellular level; when cofactors of glucuronidation were added to liver homogenates along with the NADPH regenerating system in the Ames test, BP mutagenicity was markedly decreased. Both the activation of BP to mutagenic metabolites and the inactivation of BP metabolites by glucuronidation was much more pronounced with liver homogenates from 3-methylcholanthrene-treated rats than with those from phenobarbital-treated animals or untreated controls. The results suggest an important role for glucuronidation and sulfation in the inactivation and elimination of polycyclic aromatic hydrocarbons.  相似文献   

20.
Biocatalytic transformations in ionic liquids   总被引:19,自引:0,他引:19  
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号