首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
In vitro perfusion of human placenta was evaluated for characterization of aromatase inhibitors. The results were compared with those in kinetic experiments in cell-free system. Inhibition constants (Ki) were determined by measuring the release of tritiated water during coincubation of human placenta microsomes with varying amounts of [1 beta,2 beta 3H]androstenedione and inhibitor in the presence of NADPH-generating system. Irreversible inactivation constants (Kinact) were determined in a similar manner following preincubation of the microsomes with different amounts of inhibitor for varying times. Lineweaver-Burk plots indicated a competitive type of inhibition with Ki values of 37 nM for 4-hydroxy-androstenedione, 3,700 nM for testolactone, 15 nM for 1-methyl-androsta-1,4-diene-3,17-dione, and 7.5 nM for 19-azido-androstenedione. Additionally, irreversible enzyme inactivation by all four substances could be demonstrated with Kinact values of 3.64 x 10(-3), 0.57 x 10(-3), 0.34 x 10(-3), and 0.69 x 10(-3)sec-1, respectively. Perfusion of a single cotyledon of human term placenta was performed by infusing medium through catheters placed in a fetal artery and in the maternal intervillous space. Perfused medium was collected from a cannulated fetal vein and from the maternal basal plate. The medium was supplemented with [3H]androstenedione (4.2 nM) and inhibitor. The perfusates were analyzed for their [3H]estrone and estradiol content following phenolic partition and Sephadex-LH 20 chromatography. The main results were, (1) the recovery of labelled steroids increased rapidly after perfusion started and reached a plateau within 60 min, when 55 and 30% (mean values) of the infused radioactivity were recovered in the fetal and maternal perfusates, respectively, (2) similar amounts of estrone and estradiol were found in both effluates, whereas androgens (mainly androstenedione and lower amounts of 5 alpha-androstane-3,17-dione) were found nearly exclusively in the fetal perfusate, (3) formation of estrogens (estrone + estradiol) reached a plateau within 20 min of perfusion. (4) The percentage of estrogens formed was not changed by increasing androstenedione concentration in the perfusion medium unless this concentration exceeded 3.5 microM indicating limited capacity of aromatase. (5) The four aromatase inhibitors reduced estrogen formation by 50% at concentrations about 100-fold of their Ki determined in the cell-free system, (6) irreversible aromatase inhibition could not be demonstrated in the perfusion model. It was concluded that the human placenta perfusion model can be successfully used to evaluate aromatase inhibitors.  相似文献   

2.
Exemestane (FCE 24304; 6-methylenandrosta-1,4-diene-3,17-dione) is a novel orally active irreversible aromatase inhibitor. Its in vitro and in vivo pharmacological properties have been compared to 4-hydroxyandrostenedione (4-OHA). In preincubation studies with human placental aromatase, exemestane, like 4-OHA, showed enzyme inactivating properties with a similar affinity (Ki 26 vs 29 nM) and a lower rate of inactivation (t1/2 13.9 vs 2.1 min). Conversely, when tested in pregnant mares' serum gonadotropin-treated rats, exemestane was more potent in reducing microsomal ovarian aromatase activity than 4-OHA, after both subcutaneous (ED50 1.8 vs 3.1 mg/kg) and oral dosing (ED50 3.7 vs greater than 100 mg/kg). No interference of exemestane on desmolase or 5 alpha-reductase activity was found. The compound did not show any relevant binding affinity to steroidal receptors, but slight binding to the androgen receptor (approximately 0.2% of dihydrotestosterone), like 4-OHA. In the first phase I trial, healthy postmenopausal volunteers were given single oral doses of exemestane, ranging from 0.5 to 800 mg, and plasma [estrone (E1), estradiol (E2) and estrone sulphate (E1S)] and urinary estrogens (E1 and E2) were measured up to 5-8 days. The minimal effective dose in decreasing estrogens was 5 mg. At 25 mg the maximal suppression was observed at day 3: plasma estrogens fell to 35 (E1), 39 (E2) and 28% (E1S), and urinary estrogens fell to 20 (E1) and 25% (E2) of basal values, these effects still persisting on day 5. No effects on plasma levels of cortisol, aldosterone, 17-hydroxyprogesterone, DHEAS, LH and FSH, and no significant adverse events were observed up to the highest tested dose of 800 mg exemestane.  相似文献   

3.
We have previously demonstrated that 10-propargylestr-4-ene-3,17-dione (PED) functioned as an irreversible inhibitor of rat ovarian aromatase in vitro. These studies were undertaken to examine the in vivo effects of PED on rat ovarian aromatase activity and estrogen production. In the current experiments, a single injection of PED (0.5 or 2.5 mg/kg) was found to maximally inhibit aromatase at 3 h regardless of dose. Significant inhibition of enzyme activity by PED was observed beyond 18 h, although some recovery was noted at the lower dose (0.5 mg/kg). Concomitantly, ovarian estrogen levels were also maximally reduced at 3 h, however ovarian estrogen levels returned toward control values prior to the recovery in enzyme activity. Even though significant inhibition of enzyme activity was observed at 12 h following a single injection of PED, the effect of double injections of the inhibitor at 12 h intervals was surprisingly not cumulative. Similarly, continued multiple injections of PED revealed significant inhibition of enzyme activity and estrogen production several hours after the injection, but variations in effectiveness were observed by 12 h which changed in accordance with a circannual cycle in aromatase. Apparently other factors are involved with maintaining aromatase levels and compensating for reduced enzyme activity. These mechanisms are evidenced by a continuation of the rat reproductive cycle with prolonged PED administration and a reduced influence of PED in regard to enzyme inhibition at certain times of the year. Despite these variations in the duration of action of PED, no comparable changes were observed in effectiveness as an anti-tumor agent. These results suggest that complex mechanisms exist which regulate the activity of aromatase in order to maintain estrogen production. Further research using compounds such as PED may assist in elucidating the factors that modulate ovarian estrogen production.  相似文献   

4.
Reaction kinetics of the aromatase enzyme and of a new nonsteroidal aromatase inhibitor, R 76 713 (6-[(4-chlorophenyl)(1H-1,2,4-triazol-1-yl)-methyl]-1-methyl-1H- benzotriazole), were studied in ovarian homogenates obtained from pregnant mare's serum gonadotropin (PMSG)-injected female Wistar rats. The Km (Michaelis constant) of the aromatase enzyme with androstenedione as the substrate was 47 +/- 13 nM; for testosterone as the substrate, a value of 159 +/- 10 nM was found. In the presence of increasing concentrations of R 76 713, the Km increased while the Vmax (maximal velocity of enzyme-catalyzed reaction) remained unchanged. Using androstenedione and testosterone as the substrate, Lineweaver-Burk analysis of the data showed a Ki (dissociation constant of the enzyme-inhibitor complex) for R 76 713 of 0.7 +/- 0.3 nM and 1.6 +/- 0.4 nM, respectively. R 76 713 appeared to competitively inhibit the rat ovarian aromatase.  相似文献   

5.
Aromatase, a key steroidogenic enzyme that catalyses the conversion of androgens to estrogens, represent a target for endocrine disrupting chemicals. However, little is known about the effect of pollutants on aromatase enzymes in fish. In this study, we first optimized a rainbow trout (Oncorhynchus mykiss) microsomal aromatase assay to measure the effects of 43 substances belonging to diverse chemical classes (steroidal and non steroidal aromatase inhibitors, pesticides, heavy metals, organotin compounds, dioxins, polycyclic aromatic hydrocarbons) on brain and ovarian aromatase activities in vitro. Our results showed that 12 compounds were able to inhibit brain and ovarian aromatase activities in a dose-dependent manner with IC50 values ranging from the low nM to the high microM range depending on the substance: steroidal and non steroidal inhibitors of aromatase (4-hydroxyandrostenedione, androstatrienedione, aminogluthethimide), imidazole fungicides (clotrimazole, imazalil, prochloraz), triazole fungicides (difenoconazole, fenbuconazole, propiconazole, triadimenol), the pyrimidine fungicide fenarimol and methylmercury. Overall, this study demonstrates that rainbow trout brain and ovarian microsomal aromatase assay is suitable for evaluating potential aromatase inhibitors in vitro notably with respect to environmental screening. The results highlight that methylmercury and some pesticides that are currently used throughout the world, have the potential to interfere with the biosynthesis of endogenous estrogens in fish.  相似文献   

6.
The present studies evaluated the direct effects of the presence of human cyclooxygenase-2 (Cox-2) on gene expression of specific promoter regions of the P450 Cyp19 enzyme aromatase enzyme and its product, estradiol, in Cox-2 null estrogen-dependent MCF-7 breast tumor cells and in a stable clone of MCF-7 cells containing transfected Cox-2 cDNA, designated as MCF-7/Cox-2 Clone 10. Clone 10 human breast tumor cells have significantly increased gene expression of total mRNA of the P450 Cyp19 enzyme aromatase, with high levels of gene expression of specific aromatase promoter (p) regions pII, pI.3, and p1.7, with no significant change in mRNA levels of p1.4. Clone 10 human breast tumor cells produced significantly increased amounts of both prostaglandin E2 (PGE2) derived from Cox-2 enzyme activity and estradiol derived from aromatase enzyme activity (p<0.01), compared to MCF-7/vector control cells. The greatest inhibition of PGE2 or estradiol production was observed by the combination of the selective Cox-2 inhibitor celecoxib (25 microM) and the aromatase inhibitor, formestane (10nM) (p<0.01). The greatest anti-proliferative effect in Cox-2 null MCF-7/vector control cells was observed with the combination of 25 microM celecoxib and 10nM formestane but not with 10 microM celecoxib, suggesting that there are Cox-2-independent mechanisms involved in the anti-proliferative effect of this agent at doses greater than 10 microM. Celecoxib (25 microM) also significantly inhibited proliferation of MCF-7/Cox-2 Clone 10 human breast tumor cells, with no further anti-proliferative activity with the addition of 10 nM formestane observed at either 24 or 48 h of treatment. These studies demonstrate that Cox-2 directly regulates gene expression of specific aromatase promoter regions and regulates aromatase enzyme activity. Agents that inhibit Cox-2 or block the biological effects of PGE2 may be useful in significantly limiting aromatase activity and proliferation of human breast tumor cells regardless of the presence of Cox-2. In addition, the unique human breast tumor cell model used in these studies may be a useful tool in identifying the spectrum of activities of agents that block the biological effects of PGE2 and estradiol.  相似文献   

7.
Aromatase   总被引:1,自引:0,他引:1  
Aromatase catalyzes the conversion of androgens to estrogens through a series of monooxygenations to achieve the 19-desmolation and aromatization of the neutral steroid ring-A structure. We have separated two forms of aromatase, a major (P2a) and a minor (P3) form, from human term placenta through solubilization and chromatography. Partially purified aromatase in each form was immunoaffinity chromatographed to give a single band (SDS-PAGE) cytochrome P-450 of 55 kDa, utilizing a mouse monoclonal anti-human placental aromatase cytochrome P-450 IgGi (MAb3-2C2) which is capable of suppressing placental aromatase activity. The purified cytochrome P-450 showed specific aromatase activity of 25-30 nmol/min per mg with Km of 20-30 nM for androstenedione on reconstitution with NADPH-cyt P-450 reductase and dilauroyl L-alpha-phosphatidylcholine. This one step represents a higher than 100-fold purification with maintenance of the same Km. The stability analysis showed a half-life of more than 5 yr for solubilized aromatase and 2 months for the aromatase cytochrome P-450 on storage at -90 degrees C. Contrary to the recent claim that estrogen biosynthesis by reconstituted human placental cytochrome P-450 is by trans-diaxial 1 alpha,2 beta-hydrogen elimination, all of our partially purified forms and reconstituted aromatase synthesized estrogens by cis-1 beta, 2 beta-hydrogen elimination. Use of purified aromatase and [19-3H3, 4-14C]androstenedione led us to discover a metabolic switching by aromatase to 2 beta-hydroxylation of androgen. Results of the MAb3-2C2 suppression of aromatase activity in different species and tissues including human, baboons, horses, cows, pigs and rats indicated the presence of various isozymes of aromatase.  相似文献   

8.
J O Johnston 《Steroids》1987,50(1-3):105-120
MDL 18,962 was shown to be a highly specific, potent (Ki = 3-4 nM), enzyme-activated inhibitor of aromatase with minimal intrinsic endocrine properties. The affinity of MDL 18,962 was higher for human and baboon placental aromatase than for rhesus placental or rodent ovarian aromatase. These species differences necessitated the development of a novel model of peripheral aromatase utilizing human enzyme. Human choriocarcinoma trophoblast xenografts in athymic nude mice were used for pharmacologic and pharmacokinetic evaluation of MDL 18,962. The ED50 for inhibition of aromatase activity in these trophoblast tumors at 6 h post-treatment was 1.4 mg/kg, s.c. and 3.0 mg/kg, oral. Preliminary results indicated that the ED50 for inhibition of peripheral aromatization of androgen by MDL 18,962 in female baboons was 0.01 mg/kg, i.v. and 4 mg/kg, oral.  相似文献   

9.
2 alpha-Cyanoprogesterone potently inhibits the conversion of [3H]pregnenolone into progesterone catalysed by bovine corpora lutea, bovine adrenal cortex and human term placenta microsomes (microsomal fractions), yielding IC50 (concentration causing 50% inhibition) values of 66 nM, 120 nM and 700 nM respectively. By contrast, it is an exceedingly poor inhibitor of the isomerization of pregn-5-ene-3,20-dione, yielding IC50 values between 50 and 70 microM. On this basis, 2 alpha-cyanoprogesterone would appear to be an extraordinarily selective inhibitor of the 3 beta-hydroxysteroid dehydrogenase. Dixon plots indicate that it is a very-tight-binding competitive inhibitor of the corpus-luteum enzyme, yielding a Ki of 15 nM. In the bovine adrenal cortex and human placenta the steroid is less potent and inhibits the dehydrogenase non-competitively with Ki values of 150 nM and 1.0 microM respectively. Thus 2 alpha-cyanoprogesterone inhibits the corpus-luteum dehydrogenase with substantial selectivity. Because of its high affinity for the ovarian enzyme, the presence of low-micromolar concentrations of 2 alpha-cyanoprogesterone can promote a complete cessation of progesterone synthesis in corpora-lutea microsomes for several hours. Since this effect is observed in the presence of saturating concentrations of pregnenolone (50 microM), it is predicted that this inhibitor may be even more potent in vivo. 2 alpha-Cyanoprogesterone displays very low affinity for the human progesterone receptor, yielding a Kd of 600 nM as against a Kd of 1.6 nM for progesterone. It is suggested that 2 alpha-cyanoprogesterone may be a selective inhibitor of ovarian progesterone synthesis and may act as an effective anti-gestational agent in vivo.  相似文献   

10.
Hydroxylated 2,19-methylene-bridged androstenediones were designed as potential mimics of enzyme oxidized intermediates of androstenedione. These compounds exhibited competitive inhibition with low micromolar affinities for aromatase. These inhibitory constants (Ki values) were 10 times greater than the 2,19-methylene-bridged androstenedione constant (Ki = 35–70 nM). However, expansion of the 2,19-carbon bridge to ethylene increased aromatase affinity by 10-fold (Ki = 2 nM). Substitution pf a methylene group with oxygen and sulfur in this expanded bridge resulted in Ki values of 7 and 20 nM, respectively. When the substituent was an NH group, the apparent inhibitory kinetics changed from competitive to uncompetitive. All of these analogs exhibited time-dependent inhibition of aromatase activity following preincubation of the inhibitor with human placental microsomes prior to measuring residual enzyme activity. Part of this inhibition was NADPH cofactor-dependent for the 2,19-methyleneoxy- but not for the 2,19-ethylene-bridged androstenedione. The time-dependent inhibition for these four analogs was very rapid since they exhibited τ50 values, the t1/2 for enzyme inhibition at infinite inhibitor concentration, of 1 to 3 min. These A-ring-bridged androstenedione analogs represent a novel series of potent steroidal aromatase inhibitors. The restrained A-ring bridge containing CH2, O, S, or NH could effectively coordinate with the heme of the P450 aromatase to allow the tight-binding affinities reflected by their nanomolar Ki values.  相似文献   

11.
In male subjects, peripheral aromatization of androgens accounts for most of the estrogen production, and skin is an important site of such enzymatic activity. We have studied the effects of a mechanism-based, irreversible aromatase inhibitor, 10-(2-propynyl)-estr-4-ene-3,17-dione (MDL 18,962) on androgen action and metabolism in cultured human foreskin fibroblasts. Cells were incubated simultaneously in the presence of substrate, androstenedione, and inhibitor, MDL 18,962. Aromatase activity was linear with time up to 3 h of incubation at 37 degrees C in the absence and presence of 1.0-10 nM inhibitor. The IC50 for four different cell strains ranged from 4.0 to 8.6 nM MDL 18,962. Kinetic analysis of competitive inhibition by the Eadie-Hofstee method yielded an apparent Ki of 2.75 nM for the inhibitor. Preincubation of cells with MDL 18,962 resulted in irreversible inhibition of aromatase activity which was time- and concentration-dependent. We calculated a Ki of 7.6 nM for MDL 18,962. Preincubation of cells with 25 nM MDL 18,962 suppressed enzyme activity for up to 6 h following removal of the inhibitor, before a return of enzyme activity due to synthesis of new enzyme. MDL 18,962 (0.2-20 microM) did not influence the 5 alpha-reduction of testosterone (200 nM). In addition, binding of dihydrotestosterone (2 nM) to androgen receptors was not affected by MDL 18,962 (25-1000 nM). In summary, MDL 18,962 is a specific, high potency inhibitor of aromatase. By virtue of its high binding affinity to the enzyme active site, it competes very effectively with substrate, resulting in irreversible inactivation of aromatase.  相似文献   

12.
Expression of human placental aromatase in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A full-length human placental aromatase cDNA clone, Aro 2, was isolated upon screening a human placental cDNA library with an aromatase cDNA probe and an oligonucleotide probe whose sequence was derived from a human aromatase genomic clone. Nucleotide sequence microheterogeneity was found in the 3'-untranslated region among Aro 2 and in two previously described human aromatase cDNA clones. Both the minor sequence differences and the expression of a single protein species in placental tissue suggest the presence of different alleles for aromatase. Northern blot analyses using one cDNA and two oligonucleotide probes are consistent with the two mRNA messages of 2.9 and 2.5 kilobases arising in human placenta as a consequence of differential processing. Several yeast expression plasmids containing the aromatase cDNA we cloned were constructed. The enzyme was expressed in Saccharomyces cerevisiae. The expressed activity was inhibited by the known aromatase inhibitor, 4-hydroxyandrostenedione. A level of 2 micrograms aromatase/mg partially purified yeast microsomes was estimated by analyses of carbon monoxide difference spectra on microsomal fractions from yeast carrying plasmid pHARK/VGAL. Using [1 beta, 2 beta-3H]androst-4-ene-3,17-dione as the substrate, an apparent Michaels-Menken constant (Km) of 34 nM and a maximum velocity (Vmax) of 23 pmol [3H]water formed per min/mg protein were obtained for the yeast synthesized aromatase by transformation with plasmid pHARK/VGAL. The kinetic results are similar to those determined for human placental aromatase, and suggest that the yeast synthesized aromatase will be useful for further structure-function studies.  相似文献   

13.
14.
MEN 11066 is a new non-steroidal compound which potently inhibits human placenta (Ki=0.5 nM) and rat ovarian (Ki=0.2 nM) aromatase in vitro. In vivo, a single oral dose of 0.3 mg kg−1 significantly decreased uterus weight in immature rats after stimulation of uterus growth by androstenedione. MEN 11066 reduced in a dose-dependent manner plasma estradiol levels in adult female rats treated with pregnant mare serum gonadotropin (PMSG). After 2 weeks of repeated daily treatment in adult rats, a significant decrease in uterine weight was observed together with a 65% decrease in plasma estradiol, whereas plasma levels of testosterone, progesterone, aldosterone, corticosterone, cholesterol, LH and FSH were not affected. The lack of any effect by MEN 11066 on adrenal steroids was confirmed by the unchanged plasma corticosterone and aldosterone levels in immature rats and also in adult rats when the repeated treatment with MEN 11066 (15 days) was followed by the administration of a synthetic ACTH analogue. No change in 11β-hydroxylase or 21-hydroxylase activities was produced in vitro by the addition of 10 μM MEN 11066. Fifteen-day treatment with MEN 11066 did not produce changes in several rat hepatic enzymatic activities involved in the metabolism of xenobiotics. These results demonstrated that MEN 11066 is a potent inhibitor of aromatase which does not interfere with the cytochrome P450 involved in the synthesis of other steroids or in the metabolism of xenobiotics.  相似文献   

15.
Microsomal estrogen synthetase (aromatase) cytochrome P-450 was purified from fresh human placental microsomes by monoclonal anti-aromatase P-450 antibody-Sepharose 4B chromatography. The purified P-450 showed a single band of 55 kDa on SDS-polyacrylamide gel electrophoresis and the aromatase specific activity on reconstitution was 70 nmol/min/mg protein. The purified P-450 was stable with a t 1/2 of approximately 2 years on storage at -90 degrees C and showed Km = 43 nM for androstenedione aromatization. However, it was unstable under spectral measurement conditions in the presence of sodium dithionite and carbon monoxide and the carbon monoxide difference spectra showed a maximum at 450 nm and a specific content of 9.1 nmol of P-450/mg protein, giving a turnover number of approximately 7.7 per min for the purified aromatase. The one-step immunochemical purification method gave a 490-fold increase of specific activity with 55% yield of aromatase activity of the original microsomes. Analysis of androgen metabolism by the purified aromatase and an apparent large kinetic isotope effect found at the secondary positions when using [19(-3)H3, 4(-14)C] androgens revealed metabolic switching from the first 19-hydroxylation to 1 beta- and 2 beta- monohydroxylation by aromatase. Substrate specificity for [19(-3)H3]androstenedione and testosterone was indicated by differences in the extent of metabolic switching (18% and 30%) and in the 2 beta/1 beta ratio (60/40 and 10/90, respectively). The mouse monoclonal antibody used for immunoaffinity purification suppresses aromatase activity of human placenta, but was totally ineffective for aromatase in goldfish brain and rat ovary. Rabbit polyclonal antibodies to human placental aromatase P-450 suppressed both human placental and rat ovarian aromatase but were ineffective for goldfish brain aromatase. The study indicates that they are isozymes of aromatase based on different structures of P-450.  相似文献   

16.
Testosterone (T) at physiological levels can induce precocious vaginal opening without advancing the time of first ovulation. The present experiments were undertaken to test the hypothesis that the vaginal epithelium has the ability to aromatize androgens to estrogens. Using standardized conditions, we estimated aromatase activity using both 3H2O-release from [1 beta-3H]T and thin-layer chromatographic (TLC) characterization of estrogen formed after incubations with [1,2,6,7-3H] testosterone. Vaginal aromatase-like activity, as measured by the 3H2O-release assay, increased between the juvenile and peripubertal phases of development and remained elevated throughout puberty. In contrast, ovarian aromatase increased markedly during the early proestrus (EP) and late (first) proestrus (LP) phases of puberty but declined after the first ovulation. Vaginal aromatase-like activity was induced in vivo by either stimulation of ovarian steroidogenesis with pregnant mare's serum gonadotropin (PMSG), or by producing EP levels of serum T via testosterone-containing Silastic capsules. 4-Hydroxy androstenedione, a potent aromatase inhibitor, decreased both vaginal and ovarian aromatase activity in vitro in a concentration-dependent manner. Although the principal product of ovarian aromatase derived from [1,2,6,7-3H] T was identified as estradiol (E2), the identity of the vaginal estrogen product could not be firmly established. The vaginal metabolite comigrated with 16-keto-E2 in two TLC systems before and one TLC system after acetylation but failed to recrystallize as 16-keto-E2 diacetate and failed to co-elute with 16-keto-E2 diacetate on high performance liquid chromatography. This vaginal metabolite does not correspond to any of 13 steroids tested, including 2-hydroxy-E2, and it does not represent a 5 alpha-reduced metabolite of T.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. In the stallion, estrogens were synthesized and sulfated in vivo by the testis. 2. The equine testicular enzyme aromatized androgens and 19-norandrogens with similar velocity, but not 16 alpha-hydroxytestosterone or epitestosterone in contrast to the human placental aromatase. 3. One single enzyme was implicated in the aromatization of androstenedione, testosterone, 19-norandrostenedione and 19-nortestosterone by ETMES. 4. During the process of androstenedione aromatization by ETMES, 19-hydroxyandrostenedione and 19-oxoandrostenedione were released and 4-hydroxyandrostenedione was a competitive inhibitor causing an additional irreversible enzyme inactivation which is what occurs with HPMES. 5. Dihydrotestosterone was a potent competitive inhibitor of aromatase activity.  相似文献   

18.
Clinical use of aromatase inhibitors in human breast carcinoma.   总被引:1,自引:1,他引:0  
The biological importance of aromatase rests in the concept that this is the rate-limiting enzyme involved in estrogen biosynthesis. Approx. one-third of human breast carcinomas depend upon estrogen for growth. Blockade of estrogen biosynthesis, then, provides an effective means of causing tumor regression in selected patients. The side effects and lack of specificity of the aromatase inhibitor, aminoglutethimide, provided the impetus toward development of nonsteroidal inhibitors of aromatase. Several compounds are currently being evaluated. Pyridoglutethimide is a derivative of aminoglutethimide which does not inhibit cholesterol side-chain cleavage and possesses no CNS sedative properties; the Ki for aromatase is 1100 nM, somewhat higher than for aminoglutethimide, 600 nM. CGS 16949A is a highly potent inhibitor of aromatase which is an imidazole derivative. This compound inhibits aromatase with a Ki of 0.19 nM whereas inhibition of C11-hydroxylase activity occurs at 10(-6) M. In clinical trials, this compound lowers plasma estrogen levels, blocks peripheral aromatization as documented by isotopic kinetic studies, and causes tumor regression. Phase III trials with this drug are now ongoing. Another agent, R76713, represents another highly potent and specific aromatase inhibitor with little toxicity in animal studies. The Ki for placental aromatase is 0.8 nM and this compound is approx. 500-fold more potent than aminoglutethimide. Phase I clinical studies in patients reveal a marked reduction in estrogen production. These compounds represent the most promising of a wide variety of agents currently being tested for their aromatase inhibitory properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号