首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of enzymatically isolated Y nucleoside of yeast phenylalanine tRNA was established by comparing its absorption, fluorescence, and mass spectra to that of the free base. The site of ribosylation was tentatively deduced by comparing the behavior under acid conditions of the natural nucleoside to that of synthetic Y nucleoside analogs. Our results indicate that the aglycone of the enzymatically isolated nucleoside has the same structure as the free base excised by acid treatment of phenylalanine tRNA, and that the ribose is probably attached to the N-3 position of the tricyclic nucleus.  相似文献   

2.
The influence of nucleoside triphosphates in relation to divalent cations on RNA synthesis of cells from a suspension culture from parsley was investigated. The data obtained from experiments with isolated nuclei and with an in vitro system with highly purified RNA polymerase I were compared with a chromatin-bound nucleoside triphosphatase activity within the nucleus. The results might suggest a regulatory role of the nucleoside triphosphatase activity in RNA synthesis.Abbreviations NTP nucleoside triphosphates - NTPase nucleoside triphosphatase  相似文献   

3.
The effects of delta 9-tetrahydrocannabinol (THC) treatment on acid soluble pools of uridine nucleoside and nucleotides were investigated in Tetrahymena pyriformis and in isolated mouse lymphocytes and spermatogenic cells. In THC treated Tetrahymena and mouse lymphocytes the uptake of labelled precursor into acid soluble pools of uridine nucleoside and nucleotides fluctuated, whereas in pachytene spermatocytes and round spermatid cells the labelled pool was reduced. The reduction in the labelled pool measured in mouse spermatogenic cells was attributed primarily to a reduction in radioactively labelled uridine nucleoside. Treatment of Tetrahymena in high concentrations of THC (960 and 3,200 microM) resulted in an increase of labelled uridine nucleoside and a reduction in the amount of labelled uridine nucleotides. Expansion of the acid soluble pool with radioactive uridine resulted in small differences in labelled nucleoside and nucleotides in control and THC treated Tetrahymena and mouse lymphocytes. The results are discussed in terms of the effects of THC on macromolecular synthesis in various cellular systems.  相似文献   

4.
The Q nucleosides isolated from rabbit liver tRNA are known to have sugars (mannose or galactose) linked to their cyclopentene diol moiety. A Q nucleoside containing mannose (manQ) was synthesized by a cell-free system from rat liver, using purified E. coli tRNAAsp as an acceptor and GDP-mannose as a donor molecule. The novel mannosyltransferase catalyzing this reaction was purified from a particulate-free soluble enzyme fraction and found to be strictly specific for tRNAAsp. These results, together with the anomeric configuration of mannose in Q nucleoside, indicate that no lipid intermediate is involved in the biosynthesis of Q nucleoside.  相似文献   

5.
Nucleosides are hydrophilic molecules and require specialized transport proteins for permeation of cell membranes. There are two types of nucleoside transport processes: equilibrative bidirectional processes driven by chemical gradients and inwardly directed concentrative processes driven by the sodium electrochemical gradient. The equilibrative nucleoside transport processes (es, ei) are found in most mammalian cell types, whereas the concentrative nucleoside transport processes (cit, cif, cib, csg, cs) are present primarily in specialized epithelia. Using a variety of cloning strategies and functional expression in oocytes of Xenopus laevis, we have isolated and characterized cDNAs encoding the rat and human nucleoside transporter proteins of the four major nucleoside transport processes of mammalian cells (es, ei, cit, cif). From the sequence relationships of these proteins with each other and with sequences in the public data bases, we have concluded that the equilibrative and concentrative nucleoside transport processes are mediated by members of two previously unrecognized groups of integral membrane proteins, which we have designated the equilibrative nucleoside transporter (ENT) and the concentrative nucleoside transporter (CNT) protein families. This review summarizes the current state of knowledge in the molecular biology of the ENT and CNT protein families, focusing on the characteristics of the four human (h) and rat (r) nucleoside transport proteins (r/hENT1, r/hENT2, r/hCNT1, r/hCNT2).  相似文献   

6.
The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  相似文献   

7.
The modified nucleoside, 7-(4,5-cis-dihydroxy-1-cyclopenten-3-yl-aminomethyl)-7-deazaguanosine, designated as Q, and its derivative, Q*, were found in tRNA's from various organisms, including several mammalian tissues, other animals such as starfish, lingula and hagfish, and wheat germ. Q isolated from rat liver tRNA was found to be identical with E. coli Q by mass spectrometry and thin-layer chromatography. Thus the rare modified nucleoside Q originally isolated from E. coli tRNA, is widely distributed in various organisms. Analysis of the mass spectrum of Q* suggested that it has a different side chain from Q.  相似文献   

8.
Abstract

From 24 hour collections of urines of chronic myelogenous leukemia (CML) patients, a novel nucleoside was isolated. It was assigned the structure, 5′-deoxyinosine (I) on the basis of UV, NMR and mass spectrometry and by comparison of the spectral data and HPLC and TLC mobilities with those of the authentic sample. Another nucleoside, 5′-deoxy-5′-methylthioadenosine sulfoxide previously isolated from the urines of immunodeficient children was also found in the urine of a CML patient. Possible origin and significance of both of these nucleosides are discussed.  相似文献   

9.
Existing techniques for identification of cobalamin and cobalamin analogues generally use the intact molecule during characterization with somewhat ambiguous results. In this study a method is described for the identification of the nucleoside in the lower axial ligand of cobalamin and a variety of naturally occurring cobalamin analogues that differ from cobalamin in the base that is present in the nucleoside. Cobalamin and cobalamin analogues were isolated from biological samples by affinity chromatography using R-protein-Sepharose columns. The nucleosides of the lower axial ligand were then hydrolyzed and isolated by column chromatography using a mixed bed column. Nucleosides were oxidized with periodate and reduced with borohydride. After reisolation, the t-butyldimethylsilyl derivatives were prepared and analyzed using gas chromatography/mass spectrometry with selected ion monitoring. A stable isotope internal standard of cobalamin was biosynthetically produced and used to quantitate cobalamin in rabbit kidney. Cobalamin analogues were also shown to be present in rabbit kidney, but they contain the 5,6-dimethylbenzimidazole nucleoside (alpha-ribazole) in the lower axial ligand, indicating that these analogues differ from cobalamin in the corrin ring region of the molecule.  相似文献   

10.
Nucleoside- and glucose-transport proteins isolated from human erythrocyte membranes were photoaffinity-labelled with [3H]nitrobenzylthioinosine and [3H]cytochalasin B, respectively, and subjected to endo-beta-galactosidase or endoglycosidase-F digestion. Without enzyme treatment the two radiolabelled transporters migrated on SDS/polyacrylamide gels with the same apparent Mr (average) of 55,000. Apparent Mr (average) values after endo-beta-galactosidase digestion were 47,000 and 48,000 for the nucleoside and glucose transporters respectively, and 44,000 and 45,000 respectively after endoglycosidase-F digestion. In contrast, endo-beta-galactosidase had no effect on the electrophoretic mobility of the nucleoside transporter isolated from pig erythrocytes. This transport system exhibited a higher Mr than the human protein, endoglycosidase-F treatment decreasing its apparent Mr (average) from 64,000 to 57,000. It is concluded that the human and pig erythrocyte nucleoside transporters are glycoproteins containing N-linked oligosaccharide. The data provide evidence of substantial carbohydrate and polypeptide differences between the human and pig erythrocyte nucleoside transporters, but evidence of molecular similarities between the human erythrocyte nucleoside and glucose transporters.  相似文献   

11.
12.
Abstract

A new modified nucleoside, 3-(3-amino-3-carboxypropyl)-uridine was isolated from a 24 hour collection of a normal human urine. The structure was assigned on the basis of UV, NMR and mass spectrometry data and confirmed by comparison of the spectral data and HPLC mobilities with those of an authentic sample. Origin and significance of this nucleoside in relation to tRNA is discussed. The new nucleoside is present also in the urine of cancer patients but in smaller amounts.  相似文献   

13.
The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.  相似文献   

14.
A novel modified nucleoside located in the first position of the anticodon of yeast tRNAVal2a was isolated and its chemical structure was characterized as 5-carbamoylmethyluridine by means of ultraviolet absorption spectrum, mass spectrum, and nuclear magnetic resonance spectrum.  相似文献   

15.
Pentafluoropyridine reacts with thymidine, adenosine, and uridine hydroxy groups to give quantitative yields of the corresponding nucleoside di- and triaryl ethers. The nucleophilic substitution reactions proceed successively and in parallel, with the slowest step being the nucleophilic substitution of the nucleoside secondary hydroxyls. The resulting ethers contain tetrafluoropyridyl moieties, which could be smoothly modified by nucleophilic substitution of fluorine atoms. The ethers are useful intermediate synthons (both isolated and in situ) for molecular design of oligonucleotide analogues.  相似文献   

16.
When electrophoresed on an agarose gel, the DNA isolated from neocarzinostatin- (NCS-) treated HeLa cells migrates in a ladder of discrete bands indicative of preferential breakage in the linker region of the nucleosomes. The 5'-termini of the drug-induced DNA strand breaks were characterized by reduction of the nucleoside 5'-aldehyde ends to 5'-hydroxyls followed by incorporation of 32P from [gamma-32P]ATP by polynucleotide kinase and treatment of the DNA with hot alkali and alkaline phosphatase prior to the kinase assay to give the total 5'-termini. In DNA isolated from NCS-treated cells, nucleoside aldehyde accounts for 30-45% of the drug-generated 5' ends; the remainder have PO4 termini. By contrast, 5'-terminal nucleoside aldehyde in DNA cut with the drug in vitro exceeds 80% of the total 5' ends. Of the 32P representing nucleoside aldehyde in DNA from NCS-exposed cells, 77% is in TMP; the rest is in AMP much greater than CMP greater than GMP, a distribution in excellent agreement with that obtained for in vitro drug-treated DNA. DNA sequencing experiments, using the 340 base pair alphoid DNA fragment isolated from drug-treated cells, show that the pattern of breakage produced by NCS within a defined sequence of DNA in intact cells is similar to that in the in vitro reaction, with a preferential attack at thymidylate residues, but a much higher concentration of the drug was required to cause comparable breakage in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Nucleoside diphosphate kinase (NDPK) catalyzes the transfer of terminal phosphates from nucleoside triphosphates to nucleoside diphosphates to yield nucleotide triphosphates. The present study was undertaken to localize and characterize the mitochondrial isoform of NDPK (mNDPK) in the pancreatic beta cell since it could contribute to the generation of mitochondrial nucleotide triphosphates and, thereby, to the mitochondrial high-energy phosphate metabolism of the pancreatic beta cell. Mitochondrial fractions from the insulin-secreting beta cells were isolated by differential centrifugation. mNDPK activity was assayed as the amount of [(3)H]GTPgammaS formed from ATPgammaS and [(3)H]GDP. Incubation of isolated mitochondrial extracts with either [gamma-(32)P]ATP or GTP resulted in the formation [(32)P]NDPK, which could be immunoprecipitated by an anti-NDPK serum. mNDPK exhibited saturation kinetics with respect to its nucleoside diphosphate acceptors and nucleoside triphosphate donors and sensitivity to known inhibitors of NDPK (e.g., uridine diphosphate and cromoglycate). By Western blot analyses, at least three isoforms of NDPK were identified in various subcellular fractions of the beta cell. The nm23-H1 (NDPK-A) was predominantly soluble whereas nm23-H2 (NDPK-B) was associated with the soluble as well as membranous fractions. The mitochondrial isoform of NDPK, nm23-H4, was uniformly distributed in the beta cell mitochondrial subfractions. A significant amount of NDPK (as determined by the catalytic activity and immunological methods) was recovered in the immunoprecipitates of mitochondrial fraction precipitated with an antiserum directed against succinyl-CoA synthetase (SCS), suggesting that NDPK might remain complexed with SCS. We provide the first evidence for the localization of a mitochondrial isoform of the NDPK in the islet beta cell and thus offer a potential mechanism for the generation of intramitochondrial GTP which, unlike ATP, is not transported into mitochondria via the classical nucleotide translocase. Further work will be required to determine the importance of the NDPK/SCS complex to normal beta cell function in the secretion of insulin.  相似文献   

18.
The unknown modified nucleoside U* has been isolated by enzymatic and HPLC protocols from tRNA(Leu) (U*AA) recently discovered in brewer's yeast. The pure U* nucleoside has been characterized by electron impact mass spectroscopy, and comparison of its chromatographic and UV-absorption properties with those of appropriate synthetic compounds. The structure of U* was established as 2'-O-methyl-5-carbamoylmethyluridine (ncm5Um). The yeast tRNA(Leu) (U*AA) is the only tRNA so far sequenced which has been shown to contain ncm5Um. The location of such a modified uridine at the first position of the anticodon restricts the decoding property to A of the leucine UUA codon.  相似文献   

19.
A minor species of isoleucine tRNA (tRNA(minor Ile)) specific to the codon AUA has been isolated from Escherichia coli B and a modified nucleoside N+ has been found in the first position of the anticodon (Harada, F., and Nishimura, S. (1974) Biochemistry 13, 300-307). In the present study, tRNA(minor Ile)) was purified from E. coli A19, and nucleoside N+ was prepared, by high-performance liquid chromatography, in an amount (0.6) A260 units) sufficient for the determination of chemical structures. By 400 MHz 1H NMR analysis, nucleoside N+ was found to have a pyrimidine moiety and a lysine moiety, the epsilon amino group of which was involved in the linkage between these two moieties. From the NMR analysis together with mass spectrometry, the structure of nucleoside N+ was determined as 4-amino-2-(N6-lysino)-1-(beta-D-ribofuranosyl)pyrimidinium ("lysidine"), which was confirmed by chemical synthesis. Lysidine is a novel type of modified cytidine with a lysine moiety and has one positive charge. Probably because of such a unique structure, lysidine in the first position of anticodon recognizes adenosine but not guanosine in the third position of codon.  相似文献   

20.
In murine bone marrow macrophages, lipopolysaccharide (LPS) induces apoptosis through the autocrine production of tumor necrosis factor-alpha (TNF-alpha), as demonstrated by the fact that macrophages from TNF-alpha receptor I knock-out mice did not undergo early apoptosis. In these conditions LPS up-regulated the two concentrative high affinity nucleoside transporters here shown to be expressed in murine bone marrow macrophages, concentrative nucleoside transporter (CNT) 1 and 2, in a rapid manner that is nevertheless consistent with the de novo synthesis of carrier proteins. This effect was not dependent on the presence of macrophage colony-stimulating factor, although LPS blocked the macrophage colony-stimulating factor-mediated up-regulation of the equilibrative nucleoside transport system es. TNF-alpha mimicked the regulatory response of nucleoside transporters triggered by LPS, but macrophages isolated from TNF-alpha receptor I knock-out mice similarly up-regulated nucleoside transport after LPS treatment. Although NO is produced by macrophages after LPS treatment, NO is not involved in these regulatory responses because LPS up-regulated CNT1 and CNT2 transport activity and expression in macrophages from inducible nitric oxide synthase and cationic amino acid transporter (CAT) 2 knock-out mice, both of which lack inducible nitric oxide synthesis. These data indicate that the early proapoptotic responses of macrophages, involving the up-regulation of CNT transporters, follow redundant regulatory pathways in which TNF-alpha-dependent- and -independent mechanisms are involved. These observations also support a role for CNT transporters in determining extracellular nucleoside availability and modulating macrophage apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号