首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six 9‐(heteroarylmethylidene)amino derivatives, 2a – 2f , of homocamptothecin were synthesized for the first time by total synthesis in 22 steps and biologically evaluated as inhibitors of topoisomerase I. Moreover, the antitumor activities of 2a – 2f against three human tumor cell lines, i.e., A‐549, MDA‐MB‐435, and HCT‐116, were determined and the results showed that compound 2c was the most active homocamptothecin derivative against the A‐549 (IC50=0.046 μM ) and HTC‐116 tumor cells (IC50=3.67 μM ), with a ca. 50 times higher activity than the reference drug topotecan (TPT) against the lung cancer cell line A‐549.  相似文献   

2.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   

3.
Homocamptothecin (hCPT) is a camptothecin (CPT) derivative with a seven‐membered β‐hydroxylactone E ring, which shows higher lactone stability and improves topoisomerase I (Topo I) inhibition activity. In an attempt to improve the antitumor activity of homocamptothecins, a series of 7‐alkenyl‐homocamptothecin derivatives was designed and synthesized based on a semisynthetic route starting from CPT. Most of the synthesized compounds exhibit higher cytotoxic activities on the A‐549 tumor cell line than topotecan (TPT). Some compounds such as 2a and 2o show a broad in vitro antitumor spectrum and exhibit superior Topo I‐inhibition activity.  相似文献   

4.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 μg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 μg/ml)) compared to colon (IC50>20.0 μg/ml) and stomach (IC50>20.0 μg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

5.
Chemical modifications of substrate peptides are often necessary to monitor the hydrolysis of small bioactive peptides. We developed an electrospray ionization mass spectrometry (ESI–MS) assay for studying substrate distributions in reaction mixtures and determined steady-state kinetic parameters, the Michaelis–Menten constant (Km), and catalytic turnover rate (Vmax/[E]t) for three metallodipeptidases: two carnosinases (CN1 and CN2) from human and Dug1p from yeast. The turnover rate (Vmax/[E]t) of CN1 and CN2 determined at pH 8.0 (112.3 and 19.5 s−1, respectively) suggested that CN1 is approximately 6-fold more efficient. The turnover rate of Dug1p for Cys-Gly dipeptide at pH 8.0 was found to be slightly lower (73.8 s−1). In addition, we determined kinetic parameters of CN2 at pH 9.2 and found that the turnover rate was increased by 4-fold with no significant change in the Km. Kinetic parameters obtained by the ESI–MS method are consistent with results of a reverse-phase high-performance liquid chromatography (RP–HPLC)-based assay. Furthermore, we used tandem MS (MS/MS) analyses to characterize carnosine and measured its levels in CHO cell lines in a time-dependent manner. The ESI–MS method developed here obviates the need for substrate modification and provides a less laborious, accurate, and rapid assay for studying kinetic properties of dipeptidases in vitro as well as in vivo.  相似文献   

6.
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β‐lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR‐32 transfected with the JCPyV plasmid and RT‐ PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR‐32 cells. It was found that JCPyV replicates less in IMR‐32 cells treated with topotecan or β‐lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR‐32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1‐positive cells. These results demonstrate that topotecan and β‐lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β‐lapachone could potentially be used to treat PML.  相似文献   

7.
The Werner syndrome helicase/3′-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was observed for DNA single- and double-strand break formation in response to topotecan. Topotecan induced DNA single-strand breaks 6 h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I–DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors.  相似文献   

8.
The direct pharmacological effect E is described by the E max model relating E to the drug plasma concentration C p . The area under the effect vs. time curve (AUC E ) is used as the measurement of the total net pharmacological effect. The drug plasma concentrations are solutions of compartmental systems of ordinary differential equations with the input terminated after a finite time and controlled in a proportional manner by a single dose-like parameter. The asymptotics of the time derivative of C p for large doses are derived and used as conditions which have to be satisfied by functions for which the asymptotics of the integral defining AUC E are derived. The AUC E is proportional to the time T C>EC50 for which the drug concentration stays above the threshold level EC 50. The threshold EC 50 denotes the drug plasma concentration which elicits 50% of the maximum effect. The parameter T C>EC50 is proportional to the logarithm of drug dose for large doses and its asymptotics is calculated up to the order o(1) as dose increases to infinity. The results are applied to basic pharmacokinetic systems. Received: 7 December 1999 / Revised version: 23 May 2000 / Published online: 23 October 2000  相似文献   

9.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

10.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   

11.
Abstract: Calcitonin gene-related peptide (CGRP), a 37-amino-acid peptide, is a member of a small family of peptides including amylin or islet amyloid polypeptide and salmon calcitonin. These related peptides have been shown to display similar effects on in vitro and in vivo carbohydrate metabolism. The present study was initiated to identify and characterize the binding sites for these peptides in lung and nucleus accumbens membranes prepared from pig and guinea pig. Both tissues in either species displayed high-affinity (2-[125I]iodohistidyl10)humanCGRPα ([125I]hCGRPα) binding (IC50 = 0.4–7.7 nM), which was displaced by hCGRP8–37α with equally high affinity (IC50 = 0.4–7.3 nM). High-affinity binding for [125I]Bolton-Hunter human amylin ([125I]BH-h-amylin) was also observed in these tissues (IC50 = 0.2–6.0 nM). In membranes from the nucleus accumbens of both species, salmon calcitonin competed for amylin binding sites with high affinity (IC50 = 0.1 nM) but was poor in competing for amylin binding in lung membranes. Rat amylin8–37 competed for [125I]hCGRPα binding with higher affinity (IC50 = 5.4 nM) compared with [125I]BH-h-amylin binding (IC50 = 200 nM) in porcine nucleus accumbens, whereas in guinea pig nucleus accumbens, the IC50 values for rat amylin8–37 were 117 and 12 nM against [125I]hCGRPα and [125I]BH-h-amylin, respectively. Also, functional studies evaluating the activation of adenylate cyclase and generation of cyclic AMP in response to these agonists indicated that hCGRPα (EC50 = 0.3 nM), h-amylin (EC50 = 150 nM), and salmon calcitonin (EC50 = 1,000 nM) activated adenylate cyclase, resulting in increased cyclic AMP production in porcine lung membranes that was antagonized by hCGRP8–37α. The affinity of hCGRP8–37α was similar for all three peptides. The cyclic AMP responses to amylin and salmon calcitonin were significantly (p < 0.05) lower than that of hCGRPα and not additive, suggesting that they are acting as partial agonists at the same CGRP1-type receptor in porcine lung membranes. Similar observations were made for guinea pig lung membranes. However, human amylin and salmon calcitonin were weaker than hCGRPα in activating lung adenylate cyclase. None of these peptides activated adenylate cyclase in membranes prepared from the nucleus accumbens of both species. The data from these studies demonstrate both species and tissue differences in the existence of distinct CGRP and amylin binding sites and present a potential opportunity to study further CGRP and amylin receptor subtypes.  相似文献   

12.
Fifteen diterpenoids ( 1 – 15 ), including three undescribed ones with ent‐atisane skeleton, eupnerias G–I ( 1 – 3 ), were obtained from Euphorbia neriifolia. Compounds 1 – 3 were established through comprehensive spectroscopic analysis. Compounds 4 and 5 exhibited obvious anti‐HIV‐1 effect, and their EC50 were 6.6±3.2 and 6.4±2.5 μg mL?1, respectively. Compound 6 exhibited moderate cytotoxicity on HepG2 and HepG2/Adr cells with IC50 at 13.70 and 15.57 μm , respectively. In addition, compound 15 exhibited significant cytotoxicity on HepG2 cell lines (IC50=0.01 μm ), while it did not show any cytotoxicity against HepG2/Adr cell lines.  相似文献   

13.
Selective estrogen receptor (ER) down-regulators (SERDs) are pure ER antagonists that also induce ER degradation upon binding to the receptor. Although SERDs have been developed for the treatment of ER-positive breast cancers for nearly a decade, their precise mechanism(s) of action and structure-activity relationship are still unclear. Generally, Western blotting is used to examine the effects of SERDs on ER protein levels, but the methodology is low-throughput and not quantitative. Here, we describe a quantitative, high-throughput, luciferase-based assay for the evaluation of SERDs activity. For this purpose, we established stable recombinant HEK-293 cell lines expressing ERα fused with emerald luciferase. We also designed and synthesized new diphenylmethane derivatives as candidate SERDs, and evaluated their SERDs activity using the developed system in order to examine their structure-activity relationship, taking EC50 as a measure of potency, and Emax as a measure of efficacy.  相似文献   

14.
Neurosteroid modulatory sites present in the GABAA receptor complex in chick optic lobe were investigated, in order to evaluate whether allopregnanolone and alphaxalone act through a common site of action. Results showed that either allopregnanolone or alphaxalone present a single-component enhancement of [3H]flunitrazepam binding with EC50 of 1.18 ± 0.12 and 6.56 ± 0.86 M and Emax of 82.18 ± 5.80 and 62.98 ± 3.73 %, respectively. Epipregnanolone behaved as a partial agonist of these steroid modulatory sites with EC50 of 0.49 ± 0.15 M and Emax 12.34 ± 1.03%. Moreover, the addition of 16 M epipregnanolone to either allopregnanolone or alphaxalone decreased EC50 values to 0.54 ± 0,09 and 1.24 ± 0.25 M respectively, while Emax values were not significantly affected. On the other hand, additivity experiments disclosed that a maximal concentration (16 M) of alphaxalone in the presence of allopregnanolone failed to enhance [3H]flunitrazepam binding in excess of that produced by allopregnanolone alone. Results indicate that not only allopregnanolone and alphaxalone act through a common site of action, but such site is highly stereospeciflc with regard to the neurosteroid spatial configuration.  相似文献   

15.
Abstract

A series of eight thiosemicarbazide derivatives was examined for cytotoxicity in breast cancer cell cultures. Among them, 4-benzoylthiosemicarbazides proved to be only slightly less potent than chlorambucil in both MDA-MB-231 and MCF-7 lines. In contrast, 4-aryl/alkylthiosemicarbazides revealed significantly lower cytotoxicity effect. Subsequently, all titled compounds were tested as potential human topoisomerase I and II (topo I and topo II) inhibitors. Mechanistic studies revealed that tested thiosemicarbazides act as both topoisomerase I and topoisomerase II inhibitors. Among them, the best inhibitory activity was found for 4-benzoylthiosemicarbazides (1 and 2) with IC50 at 50?µM against topo II.  相似文献   

16.
Deposition of amyloid fibrils, consisting primarily of Aβ40 and Aβ42 peptides, in the extracellular space in the brain is a major characteristic of Alzheimer's disease (AD). We recently developed new (to our knowledge) drug candidates for AD that inhibit the fibril formation of Aβ peptides and eliminate their neurotoxicity. We performed all-atom molecular-dynamics simulations on the Aβ42 monomer at its α-helical conformation and a pentamer fibril fragment of Aβ42 peptide with or without LRL and fluorene series compounds to investigate the mechanism of inhibition. The results show that the active drug candidates, LRL22 (EC50 = 0.734 μM) and K162 (EC50 = 0.080 μM), stabilize hydrophobic core I of Aβ42 peptide (residues 17–21) to its α-helical conformation by interacting specifically in this region. The nonactive drug candidates, LRL27 (EC50 > 10 μM) and K182 (EC50 > 5 μM), have little to no similar effect. This explains the different behavior of the drug candidates in experiments. Of more importance, this phenomenon indicates that hydrophobic core I of the Aβ42 peptide plays a major mechanistic role in the formation of amyloid fibrils, and paves the way for the development of new drugs against AD.  相似文献   

17.
Herein, we describe the discovery, synthesis, and evaluation of a novel series of spiro[chromane-2,4′-piperidine] derivatives as G-protein-coupled receptor 119 agonists. Their initial design exploited the conformational restriction in the linker-to-tail moiety, which was a key concept in this study, to give lead compound 11 (EC50?=?369?nM, Emax?=?82%). An extensive structure–activity relationship study resulted in the identification of the optimized drug candidate (R)-29 (EC50?=?54?nM, Emax?=?181%). The defining structural features of the series were a terminal benzyl-type bulky substituent and a methylene linker between the sulfonyl and phenyl groups, both of which were in the head moiety as well as the spiro-type scaffold in the linker-to-tail moiety. An in vivo oral glucose-tolerance test using C57BL/6N mice showed that (R)-29 reduced glucose excursion at a dose of 3?mg/kg in a dose-dependent manner.  相似文献   

18.
Summary Lung cell culture may be useful as anin vitro alternative to study the susceptibility of the lung to various toxic agents. Lungs from female Wistar rats were enzymatically digested by recirculating perfusion through the pulmonary artery with a sequence of solutions containing deoxyribonuclease, chymopapain, pronase, collagenase, and elastase. Lung tissue was microdissected and resuspended and the cells obtained were washed by centrifugation. By this isolation method, 2×108 cells per rat lung were obtained with an average viability of 97%. Lung cells cultured in medium containing antibiotics and serum maintained a viability of >70% for 5 d. Rat primary lung cells were exposed to various toxic agents and their viability was assessed by formazan production capacity after 18 h of incubation. Compared to rat and mouse hepatocyte cultures (EC50=5.8 mM), rat primary lung cells were much more susceptible to hydrogen peroxide (EC50=0.6 mM). All cell types were equally sensitive to the more potent toxicanttert-butylhydroperoxide (EC50=0.1 mM). Paraquat was more toxic to lung cells (EC50=0.03 mM) than to rat (EC50=2.8 mM) and mouse (EC50=0.2 mM) hepatocytes. In contrast, rat lung cells were less sensitive to sodium nitroprusside (EC50=2.6 mM) compared to rat (EC50=0.2 mM) and mouse (EC50=0.03 mM) hepatocytes. Nitrofurantoin and menadione (at EC50=0.04 mM and 0.006 mM, respectively) were more toxic to rat lung and liver cells than to murine hepatocytes (EC50=0.2 mM and 0.04 mM, respectively). Our findings demonstrate the applicability of this rat primary lung cell culture for studying the effects of lung toxicants. Parts of the study had been presented orally at the meeting of the German Society of Toxicology and Pharmacology in Mainz (FRG), March 15–17, 1994.  相似文献   

19.
Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAFV600E, as a result of the BRAFT1799A mutation, plays a fundamental role in thyroid tumorigenesis. This study investigated the therapeutic potential of a BRAFV600E-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAFT1799A mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAFT1799A mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC50 values (0.115–1.156 μM) in BRAFV600E mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC50 values (56.674–1349.788 μM). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAFT1799A mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAFT1799A mutation-selective therapeutic agent for thyroid cancer.  相似文献   

20.
DNA is susceptible of being damaged by chemicals, UV light or gamma irradiation. Nuclear DNA damage invokes both a checkpoint and a repair response. By contrast, little is known about the cellular response to mitochondrial DNA damage. We designed an experimental system that allows organelle-specific DNA damage targeting in Saccharomyces cerevisiae. DNA damage is mediated by a toxic topoisomerase I allele which leads to the formation of persistent DNA single-strand breaks. We show that organelle-specific targeting of a toxic topoisomerase I to either the nucleus or mitochondria leads to nuclear DNA damage and cell death or to loss of mitochondrial DNA and formation of respiration-deficient ‘petite’ cells, respectively. In wild-type cells, toxic topoisomerase I–DNA intermediates are formed as a consequence of topoisomerase I interaction with camptothecin-based anticancer drugs. We reasoned that targeting of topoisomerase I to the mitochondria of top1Δ cells should lead to petite formation in the presence of camptothecin. Interestingly, camptothecin failed to generate petite; however, its derivative topotecan accumulates in mitochondria and induces petite formation. Our findings demonstrate that drug modifications can lead to organelle-specific DNA damage and thus opens new perspectives on the role of mitochondrial DNA-damage in cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号